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This paper proposes use of transfer learning through deep learning to reduce the computing cost of the topology optimization of 

electric motors. It is shown that the training of the convolutional neural network (CNN) can be made effective using the transfer learning. 

Moreover, the recursion is realized by CNN. The computing cost is shown to be reduced by about 80% by the proposed method to obtain 

the pareto solutions of the multi-objective problem with respect to the average torque and torque ripple of a permanent magnet motor. 
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I. INTRODUCTION 

ecently, development of high-performance motors has 

become considerably important because the fuel fossil 

vehicles are expected to be replaced by plug-in hybrid and 

electric vehicles. In development of such motors, it is necessary 

to consider various the motor characteristics as well as 

constraints relevant to average torque, torque ripple, loss, 

demagnetization, mechanical vibration, mechanical strength 

and so on. To develop an electric motor considering these 

complicated conditions, topology optimization based on the 

genetic algorithm (GA) and finite element method (FEM) is 

effective especially for the initial design phase [1]. However, it 

sometimes needs unacceptably long computing time to perform 

optimization because a number of fitness evaluations using 

FEM are involved. 

It has been shown by the authors that introduction of deep 

learning as a surrogate model to the topology optimization can 

reduce the computational cost [2, 3]. However, large input data 

has to be prepared to train the convolutional neural network 

(CNN) prior to the optimization process. In this paper, we 

propose a method using the fine tuning for CNN with relatively 

small training data. In this method, CNN preliminary trained by 

the general image data is re-trained by the data composed of the 

cross-sectional image of electric motors and their torque 

performances. Moreover, the recursion is realized by the 

proposed CNN for acceleration of the topology optimization. 

II. PROPOSED OPTIMIZATION BASED ON DEEP LEARNING 

A. Transfer learning 

In the shallow layers of CNN, the local features 

represented by stripes with various directions are extracted 

while the global features are extracted in the deep layers.  

Because the local features are expected to be common for 

general images of things, the shallow layers trained by a large 

data set containing various images would be used for other 

image data set. On the other hand, the deep layer is tuned to 

the image data of interest. This is the principle of the transfer 

learning [4] that is a technique to adapt a neural network 

learned for a certain problem separately to a different 

problem. In this study, we use the classifier VGG 16 [5] 

trained by ILSVRC 2012 in ImageNet which is a data set 

composed of 1000 different classes and 1.2 million learning 

data. We re-train the layers deeper than 9th layer of VGG16 

using the data composed of the cross-sectional image and the 

corresponding average torque and torque ripple of an inner 

permanent magnet (IPM) motor. 

Moreover, in this study, we realize the deep neural network 

which performs recursion of the torque performances, while 

classification is realized in the previous papers [2, 3]. To do 

so, the full connected layer is replaced by the four layers 

shown in Fig.1. The merit of recursion over classification in 

the optimization will be mentioned in the following section. 

 

 
 

Fig. 1. Realization of recursion by CNN 

B. Optimization Method 

In this study, we consider the multi-objective topology 

optimization of an IPM motor using GA and Gaussian basis 

functions [1] where the average torque 𝑇ave is maximized and 

torque ripple 𝑇rip is minimized. To construct the learning data, 

we perform the preliminary optimization with small population 

setting which is summarized in the left column in Table I. In the 

main optimization process, for which the parameters in the right 

column of Table I are used, all the individuals are evaluated by 

the trained CNN, and only the individuals on the Pareto front 

are re-evaluated by FEM. The pseudo code of the proposed 

method for the main optimization problem is summarized in 

Fig.2. 

III. OPTIMIZATION RESULTS 

A. Accuracy of CNN 

We train CNN by the data obtained from the optimization for 

the small population, shown in the left column of Table I is 
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carried out by FEM analysis. To verify the transfer learning, 

CNN is trained in the different conditions: (a) training is 

performed for all the layers (usual training) and (b) the deep 

layers are trained (transfer learning), as summarized in Table II. 

The mean square errors for 𝑇ave and 𝑇rip for both learning are 

plotted against the number of epochs in Fig.3. It is evident that 

the transfer learning has the better convergence. The accuracy 

of recursion performed by CNN that is trained by the transfer 

learning is shown in Fig.4. 

B. Result of main optimization 

The pareto solutions obtained by solving the preliminary and 

main optimization problems are shown in Fig. 5. The cross 

section of an IPM motor on the pareto front, marked P in Fig.5, 

is shown in Fig.6.  The corner of the L-shaped curve composed 

by the pareto solutions is improved by the main optimization. 

The solutions obtained by the main optimization are, however, 

partially dominated by the solutions obtained by the 

preliminary optimization. This might be due to the stochastic 

nature of GA. 

When the individuals are classified into several classes 

according to the torque performance as in [2][3], the number of 

individuals on the Pareto front increases as the generation of 

GA because of the round error caused by the classification. This 

problem is expected to be overcome by introducing the 

recursion performed by CNN. Indeed, the number of execution 

of FEM, normalized by the FEM computations for conventional 

optimization, is suppressed for all the generations when using 

the proposed recursion as shown in Fig. 7. This point will be 

discussed in the long version in detail. 
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for max generation 

if initial generation 

generate initial population with random genes 
evaluate Tave and Trip of population by classifiers 

rank population by NSGA-Ⅱ 

for each individuals of population 

compute probability  for FE analysis 

if  
evaluate Tave and Trip by FEM 

end if 

end for 
else 

select parents 

generate children 
evaluate Tave and Trip of children by VGG16 

rank children by NSGA-Ⅱ 

for each individuals of children 

if rank==1 

evaluate Tave and Trip by FEM 

end if 
end for 

rank individuals of population + children by NSGA-Ⅱ 

choose next population 

end if 

end for 

Fig. 2. Pseudocode of main multi-objective optimization 
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TABLE I 

PARAMETERS FOR GA 

 
Preliminary 

optimization 

Main 

optimization 

Number of genes 28 28 

Population size 352 704 
Number of children 160 320 

Number of generation 100 200 
 

TABLE II 

VGG16 PARAMETER 

 
(a) Training 

all layers 

(b) Transfer 

Learning 

Number of training 

images 
16030 16030 

Number of trainable 

parameter 
21137986 20582658 

Epoch 100 100 

Weight Random ImageNet 
 

  
Fig. 3 Errors in CNN Fig. 4 (a) Accuracy of 𝑇ave 

  
Fig. 4 (b) Accuracy of 𝑇rip Fig. 5 Pareto solutions 

 

  
Fig. 6 IPM motor located at P in Fig.5 Fig. 7 Number of execution of FEM 
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