
Abstract—The knowledge of the critical current density in the 
superconducting filaments is an important issue of the LHC main 
magnets design during the construction at CERN. A new method 
for modelling a superconducting strand which consists of several 
concentric layers of the filaments is proposed in this paper. The 
superposition theorem in the circuit theory is applied in this 
method. The numerical results obtained by using the finite 
element method demonstrate the coupling and decoupling 
behaviours between the superconducting filaments via the 
resistive matrix. The comparison with the earlier work on the 
superconductor modelling are presented and discussed. 

Index Terms—Electromagnetic coupling, finite element 
methods, magnetization, superconducting filaments 

I. INTRODUCTION 
In recent years, the superconducting multifilamentary 

strands composing the Rutherford cables of the LHC main 
magnets are produced at CERN [1]. In order to design these 
magnets, the knowledge of the current density distribution in 
the filaments is necessary [2]. For several years, the coupling 
and decoupling behaviours between the superconducting 
filaments via the resistive matrix can be described by the 
numerical results obtained by using the finite element method. 

A strand is normally made up of several concentric layers 
of the filaments. The aim of this work is to model a strand 
which consists of several layers of the superconducting 
filaments. For that, we propose a new method by using the 
superposition theorem and Ohm’s law from the circuit theory. 
In this paper, we demonstrate the coupling and decoupling 
between the superconducting filaments in an applied field. The 
current density distributions and the magnetization hysteresis 
loops are presented. The comparison with the earlier work in 
[3] and [4] is shown too. 

II. PROBLEM ANALYSIS 
Let us consider a model of a strand composed of several 

concentric layers of the superconducting filaments with a 
finite length L, as shown in Fig. 1 (left). The filaments are 
arranged, within each of the layers, substantially on a circle. 
The innermost layer (1st layer) and outermost layer (nth layer) 
are made of 6 filaments and 6×n filaments respectively with 
one filament at the centre of the strand. For a test model in 
Fig. 1 (right), a strand formed of two adjacent layers of the 
filaments is proposed. All filaments are embedded in a normal 
resistive matrix. The external field is applied in the direction 
perpendicular to the filament axis (z axis). The current density 
is assumed to depend on time (t) and 2-D Cartesian 
coordinates (x, y). For simplicity and due to the source field 
distribution, we suppose that the voltages and the currents are 
in the form of a sinusoid. For the ith layer, we have  

 ሾ ܸ ሿ௧ܫ ൌ ሾ ܸ ሿ௧ܫ ൈ ሾሺ݇݊݅ݏ െ 1ሻ2ߨ ݊⁄ ሿ (1) 
where k = 1, 2, ... , ni and ni = 6×i. 

Starting from the superposition theorem, by feeding only 
the ith layer with the voltage Vi , the AC losses Pi in the 
resistive matrix is obtained by  

 ܲ ൌ ܻ ܸ
ଶ ∑ ଶሾሺ݇݊݅ݏ െ 1ሻ2ߨ ݊⁄ ሿ

ୀଵ  (2) 
where Yi = Ii/Vi . Then, feeding two adjacent layers together 
with the voltages Vi and Vj , the AC losses Pij which is equal to 
Pji can be obtained by  

 ܲ ൌ ൫ ܻ ܸ
ଶ  ܻ ܸ ܸ൯ ∑ ଶሾሺ݇݊݅ݏ െ 1ሻ2ߨ ݊⁄ ሿ

ୀଵ 
൫ ܻ ܸ ܸ  ܻ ܸ

ଶ൯ ∑ ଶൣሺ݇݊݅ݏ െ 1ሻ2ߨ ݊⁄ ൧ೕ
ୀଵ . (3) 

Furthermore, the AC losses Pi and Pij can be calculated by 
a 2-D formulation of a harmonic problem with the imposed 
values Vi = Vj = 1 [4]. Therefore, we can deduce Yi and Yij 
from (2) and (3). For a test case of two layers, we obtain  

 ଵܻ ൌ భ
ଷభ

మ    ,   ଶܻ ൌ మ
మ

మ    ,   ଵܻଶ ൌ భమିଷభభ
మିమమ

మ

ଽభమ
. (4) 

Note that for n layers strand, the total number of 
computations to obtain Y is n×(n+1)/2, the total number of 
filaments in the strand is N+1 where  

 ܰ ൌ 6 ൈ ∑ ݅
ୀଵ . (5) 

          
 

Fig. 1.  Model of a strand composed of n concentric layers of the filaments. 
 

By using Ohm’s law, we obtain the relation between the 
currents inside the filaments and the voltages which can be 
written in the matrix form as follows  

ܫ  ൌ ൦

ଵܫ
ଶܫ

ڭ
ܫ

൪ ൌ ܥ ൦

ଵܫ
ଶܫ
ڭ

ܫ

൪ ൌ ሾܻሿܥ ൦
ଵܸ

ଶܸ
ڭ
ܸ

൪ ൌ  ሾܻሿܸ (6)ܥ

ܥ  ൌ ൦

ଵܥ
0
ڭ
0

 

0
ଶܥ

ڭ
0

 

…
…
ڰ
…

 

0
0
ڭ

ܥ

൪   ,   ሾܻሿ ൌ ൦
ଵܻ  

ଵܻଶ
ڭ
ଵܻ

 
ଵܻଶ

ଶܻ  
ڭ
ଶܻ

 

…
…
ڰ
…

 
ଵܻ

ଶܻ
ڭ
ܻ  

൪ (7) 

where Cik are the values of the sinusoid. For the filament at the 
centre, due to the symmetry V0 = 0 and naturally I0 = 0. 
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Remark that the square matrix [Y] is a symmetric matrix. The 
dimensions of C and [Y] are N×n and n×n respectively. 

III. NUMERICAL MODELLING 
In order to characterize the nonlinear electric property of 

the superconductors, the behaviour laws between the current 
density and the electric field are proposed in [5] and [6]. For 
that, in this work, we use an extension of Bean’s critical state 
model (see in [7]). A geometric model of the problem as in 
Fig. 1 is recently created by using a finite element mesh 
generator called Gmsh [8]. The results of the problem which 
can be obtained by modifying the finite element program of 
LGEP are the electric field. The currents circulating in the 
filaments at each iteration p can be derived from [3]  

ܫ  ൌ ൫ሾܣ௩ሿ௧ܧ  ሾܣ௩ሿܧ
൯ ൈ ݐ∆   ିଵ (8)ܫ

where [Aev] and [Av] indicate the matrix of rigidity and the 
matrix of the electric resistance respectively [4]. E is the 
vector of the electric field and the voltage per unit of length in 
the filament E0 is defined as follows  

ܧ  ൌ െܸܥ ⁄ܮ . (9) 
By replacing (6) in (8) and using (9), we have  

 ܸ ൌ ሾܣሿିଵ(10) ܤ 
where (in the case of n layers, the dimensions of [A], B and D 
are n×n, n×1 and N×n respectively)  

 ሾܣሿ ൌ ܤ   ,   ܦ௧ܦ ൌ ܧ௩ሿ௧ܣ௧ሺሾܦ ൈ ݐ∆   ିଵሻ (11)ܫ

ܦ  ൌ ሾܻሿܥ  ሾܣ௩ሿܥ ൈ ݐ∆ ⁄ܮ . (12) 
By using V, we obtain E0 and then I from (9) and (8) 

respectively. Finally, we can solve the problem with the 
following matrix system  

 ሾܯሿ߲௧ܬ  ሾܣሿܧ  ሾܣ௩ሿܧ ൌ  (13) ܨ
where [M] and [Ae] indicate the matrix of mass and the matrix 
of rigidity respectively. J and F are the vector of the current 
density and the vector of source terms respectively. 

Otherwise, by changing the variables, we have  

 ܸ ൌ െሾܥ௧ܥሿିଵܥ௧ܧ ൈ  (14) .ܮ
By replacing (14) in (6) and then in (8), so we have  

ܧ 
 ൌ ሾܣሿିଵ(15) ܤ 

where (in this case, the dimensions of [A] and B are N×N and 
N×1 respectively)  

 ሾܣሿ ൌ െܥሾܻሿሾܥ௧ܥሿିଵܥ௧ ൈ ܮ െ ሾܣ௩ሿ ൈ  (16) ݐ∆

ܤ  ൌ ሾܣ௩ሿ௧ܧ ൈ ݐ∆   ିଵ. (17)ܫ
By using E0 , I is obtained from (8) and then the problem 

can be solved with (13). 

IV. SIMULATION RESULTS 
In order to test our model and approach to the real 

structure of the LHC strand, we make simulations of a strand 
composed of two layers of 19 superconducting filaments with 
a filament diameter of 7 μm in a copper matrix with σ = 1010 
S/m and Jc = 2,000 A/mm2 at Ba,max = 20 mT, 50 Hz [1]. 

Figure 2 shows the simulation results of the current density 
distributions in the modelled domain (Fig. 1 (right)) at partial 
(left) and total (right) penetrations. The figures on the top and 
the bottom show the cases of full coupling and full decoupling 
respectively. We can see the persistent current shells in the 
filaments. We observe that these results are in agreement with 
those in [3] and [4]. We find again that the situation of partial 
coupling appears when the length of the filament is a few μm. 
These results confirm that our model works well. In addition, 
we can present the current distribution in the resistive matrix 
and also the magnetization hysteresis loops. Moreover, our 
model allows us to calculate the magnetization per unit of 
superconductor volume versus the number of layers too. 

  
(a) 

  
(b) 

Fig. 2.  Current density distributions in the superconducting filaments for a 
test model: (a) full coupling case and (b) full decoupling case. 
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