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Abstract—This paper proposes a WENO finite difference
method to simulate the fluid model of streamer discharges.
To simulate the rapid transient streamer discharge process, a
method with high resolution and high order accuracy is highly
desired. High order WENO is such a choice. A simulation of
a double-headed streamer discharge in Nitrogen was performed
using 2-dimensional fluid model. The preliminary results indicate
the potential of extending the method to general streamer
simulations.

I. INTRODUCTION

The streamer discharge is the initial stage of various elec-
trical discharges that happens every day. Most micro streamer
discharge parameters still cannot be measured by experiments,
which makes numerical simulations essential tools for a better
understanding of streamer physics.

The simplest and most frequently used model for streamer
discharge is the fluid model, which consists of two continuity
equations (which are convection-dominated diffusion equa-
tions with source terms) coupled with a Poisson’s equation, see
Eq. (1) to Eq. (5), where ne,p are the charged particle densities,
µe,p are the movability coefficients, ve,p are the convection
velocities, Dr and Dz are the diffusion coefficients, the index
e, p means electrons, positive ions, respectively. U and E are
the electrical potential and electric field, respectively; ε0 is the
dielectric coefficient in air; e0 is the unit charge of an electron.
α and η are measured by experiments. See [1] for details.
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The continuity equations, i.e., Eq. (1) and Eq. (2), are
convection dominated. Godunov show that high order linear
numerical schemes may generate numerical oscillations for
these equations [2]. In addition, first order schemes for con-
vection dominated problems suffer from numerical diffusions.
A high order scheme free of numerical oscillations and of high
resolution is greatly desired.

In this paper, we use a WENO finite difference scheme
to solve the continuity equations due to its high numerical
stability, high order accuracy and high efficiency.

II. A WENO SCHEME FOR CONTINUITY EQUATION
DISCRETIZATION

We take the governing equation of electrons for example.
Multiplying Eq (1.1) by r, we get
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A. Spacial discretization

To illustrate the main idea of the WENO finite difference
scheme, we first consider the following 1D case:
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Eq. (8) is k-th order accurate in space if
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Eq. (9) can be achived by the WENO reconstruction [3].
Assuming f ′(u) ≥ 0, at time tn,

1) Obtain the cell average of an implicit existing polyno-
mial h on cell i by h
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On general occasions that f(u) is not locally monotone over
a stencil, the following flux splittings are performed:
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where αi+ 1
2

is the local maximal of |f ′(u)| over the stencil,
and the superscript i+ 1

2 is used to clarify that the splitting is
related to the interface ri+ 1

2
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Set λ = △t
△r , a finite difference scheme for Eq. (7) is
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The diffusion term can be discretized by central difference
or other high order difference schemes. The whole scheme is
direct forward to be extended to higher dimensions.

B. Temporal Discretization

After the space discretization, we get an ODE,

du
dt

= L(u). (12)

The Total-Variation-Diminishing Runge-Kutta (TVDRK) pro-
posed by Shu is used for time discretizaton [4].

III. DISCRETIZATION OF POISSON’S EQUATION

The Poisson’s equation is discretized by central finite dif-
ference scheme. The resulted linear equations can be solved
by the fast FISHPACK.

IV. SIMULATION RESULTS

We first test a double headed streamer discharge simulation
in Nitrogen in a long parallel-plates applied with 52 kV voltage
(a = b = 1 cm in Fig. (1)).
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Fig. 1. the configuration of the discharge simulation

Fig 2(a) gives the electric field along the z-axis at different
times(1 ns = 10−9 s) and Fig (2(b)) shows charge densities
distribution at t = 2 ns. The electric field is largely enhanced
by the net charge and move towards the opposite electrode.
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(b) charge densities distribution at t = 2 ns

Fig. 2. calculated electric field and charge densities distribution

V. CONCLUSION

This paper proposes a WENO finite difference method
to simulate the fluid model of streamer discharges. A sim-
ulation of a double-headed streamer discharge in Nitrogen
was performed using 2-dimensional fluid model. The results
considering the exact photo-ionizations would be reported in
the full version.
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