
Abstract—A 3D domain decomposition approach for analyzing 
electro-thermal contact problems is presented. The computational 
domain is subdivided into non-overlapping regions discretized 
according to the Cell Method, where variables and field equations 
are expressed directly in integral form suitable for coupling the 
contact problem to the electro-thermal one in the bulk regions. 
The electrical and thermal continuity between contacting regions 
is enforced by means of dual Lagrange multipliers as in mortar 
discretization methods. Contact resistance measurements are used 
to calibrate the parameters of the electrical constitutive equation, 
modeling voltage drops and power losses at the contact interface.  

Index Terms—Contact resistance, Electromagnetic modeling, 
Numerical simulation, Parameter estimation, Power dissipation. 

I. INTRODUCTION 

The numerical simulation of the contact problems plays an 
important role in many industrial applications, but it is still 
challenging due to their complexity that is mainly due to 
multi-physics and multi-scale behavior and to geometry with 
non-convex and disconnected parts. Therefore, most of 
conventional FEMs are not suitable for their treatment [1]. 
Contacts can be much more effectively modeled by Domain 
Decomposition (DD), where the field problem is split into 
sub-problems matched by projection operators [2]-[4].  
Among DD approaches, mortar methods provide a flexible 
way to enforce continuity between sub-domains by means of 
additional unknowns, i.e. the dual Lagrange multipliers [5]-[7].  

In this paper a three-dimensional Mortar Cell Method for 
multi-scale modeling of electro-thermal contact problems is 
proposed, where the contact conductivity distribution is 
identified from experimental data so that contact resistance 
and local Joule losses are simulated.   

II. MORTAR CELL METHOD 

A. Discrete contact interface problem 

Contact is established when two members share a common 
interface where voltage drop occurs. According to [8] this 
discontinuity can be suitably modeled by a mortar formulation 
where interface conditions are imposed by means of dual 
Lagrange multipliers defined on the mortar surface mΓ . This 

formulation is briefly outlined in the following.  
In Fig. 1 the computational domain Ω is split into slave Ω1 

and master Ω2 sub-domains, discretized with non-conforming 
meshes. Field problems are formulated with the Cell Method 
(CM) in terms of linear equations, where arrays of dofs such as 
line integrals and fluxes are defined on dual cell complexes. 

 

 
Fig. 1. Computational domain of the Mortar Cell Method. 

 

Dual complexes on mΓ  are built from those on contacting 

surfaces 1cΓ  and 2cΓ , yielding a finer mesh that allows 

discretizing the interface conditions accurately. This feature 
makes the mortar method more suited for multi-scale modeling 
than standard DDs, which do not make use of a mortar mesh.   

Dual Lagrange multipliers consist of electric potentials ±
mv  

defined on the primal nodes of mΓ  and currents mj  defined 

on the dual faces of mΓ . Potentials are mapped from mΓ to 

1cΓ  and 2cΓ  by means of a projection matrix P. Currents are 

mapped from 1cΓ  and 2cΓ  to mΓ  by dual projection matrix 
TPP =~

 according to the CM. Electric-thermal continuity 
between contacting parts is established by Kirchhoff’s laws as 
in Circuit Theory. Kirchhoff’s voltage law is expressed as 

 cm vPv =][        (1) 

where  −+ −= mmm vvv ][  is the array of the potential jumps and  

cv  is the array of the potentials on 
21 ccc Γ∪Γ=Γ . Kirchhoff’s 

current law is imposed by means of the dual projection matrix  

 0
~ =+ cm jjP        (2) 

where mj  is the array of currents on mΓ  and cj  on  
cΓ . The 

voltage drop across mΓ  depends on the contact resistance, 

which is accounted for by a surface conductivity σC (Sm−2) 
whose parameters are inferred from experimental data (Section 
III). The constitutive equation becomes thus 

][ mm C
vMj σ−=       (3) 

where the matrix 
CσM , discretizing σC, is diagonal. 
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B. Discrete formulation in bulk regions 

In steady-state conduction problems, CM degrees of freedom 
are voltages u, defined on primal edges, and currents j, defined 
on dual faces. In bulk regions the electric conductance 
operator σM  is obtained by discretizing local Ohm’s law 

EJ )(θσ=  into uθMj )(σ= , where )1(/)( 0 αθσθσ +=  

and variables θ  are the temperature variations on primal 
nodes. Voltages are expressed directly in terms of potentials v 
by Kirchhoff’s voltage law vGu −= , where G is the discrete 

gradient operator. Kirchhoff’s current law reads 

sc jjjD =+~
, where T~

GD −= is the discrete divergence 

operator and sj  is the array of the source currents impressed 

on the boundary. By assembling constitutive and continuity 
equations the following non-linear matrix system is obtained: 

 

sc jjvGθMG =+)(T
σ                (4) 

where currents cj  link the bulk and mortar electric problems. 

As regards the thermal problem, the stiffness matrix can be 
assembled as (4) with a constant matrix

λ
M  in place of σM : 

),(T
θvwqθGMG =+ cλ     (5) 

where cq  are heat fluxes on the boundary and w is the array of 

electric powers dissipated inside dual cells. Electric and 
thermal equations are finally assembled into a single 
non-linear matrix system to be solved in terms of v and θ .  

III.  CONTACT RESISTANCE MODEL  

The conductivity distribution is modeled by the statistical 
relationship derived from Holm’s theory, which describes local 
conduction phenomena [9]. Conductivity depends on apparent 
contact pressure p, surface roughness r, mean asperity slope m, 
bulk conductivity bσ , and micro hardness H, as 

5.1
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where )/2(erfc2 1 Hp−=ξ . Geometric parameters r and m 

are evaluated from micro-mechanic measurements, while the 
dimensionless contact pressure p/H has to be identified from 
experimental data, according to [9].  
 Fig. 2 shows the test set-up: Plane-plane contact members 
(brass or aluminum, 9 cm diameter) have been considered for 
measuring contact resistance. When members are in contact, a 
DC current is impressed by a stabilized generator (6 kA max). 
The applied contact force and displacement are controlled by a 
universal machine (MTS 858 Mini Bionix II, 15 kN max). 
Electric potential, current, and temperature time profiles along 
electrodes have been registered by a HP 34970A multiplexer.  

Fig. 3 shows preliminary measures for the brass specimens. 
A bath-tub force curve (14 kN max) is applied for 300 s and 
DC current is held constant in any test (200, 400, 600 A).  It 
can be noted that contact resistance is almost independent on 
the impressed current and decreases with force till a minimum 
value of 7 µΩ is attained. An extended analysis of experiments 

and a comparison between measured and inferred contact 
resistance values are provided in the paper.      
 

 
 

Fig. 2. Test set-up: plane-plane aluminum contact members.    

 
Fig. 3. Contact resistance and applied force vs. time (brass plane-plane 

members) for different impressed DC currents (200, 400, 600 A).   
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