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Abstract—The paper establishes a connection between the
recently proposed homogenization methodology for electromag-
netic metamaterials with the theory of discrete Hodge operators.
The methodology also makes extensive use of Trefftz bases
(functions that satisfy the underlying differential equation locally
and tend to approximate the solution well). All these ideas
have been extensively explored in other areas but are now
applied to homogenization. Discrete Hodge operators are linear
mappings between the pairs of suitably defined coarse-grained
fields viewed as differential forms. Several definitions of discrete
Hodge operators are considered, with a focus on preserving the
energy or, more generally, the bilinear form associated with the
underlying differential equation. The theory is non-asymptotic,
i.e. applicable to arbitrary lattice cell sizes (not necessarily
vanishingly small), which is essential in the analysis of nontrivial
effects (“artificial magnetism,” negative refraction, cloaking).

Index Terms—Homogenization, discrete Hodge operators,
metamaterials, effective material parameters, Trefftz functions

I. Introduction

This paper fuses together three ideas that have been the
subject of much attention in the Compumag community over
the years and applies these ideas in a new area: homog-
enization of electromagnetic metamaterials. The first idea,
the use of discrete differential forms and the closely related
div- and curl-conforming interpolation of fields, has been
extensively explored since the early 1980s in the context of
edge and face elements [1]–[3]. It was later understood that
many computational methods can be obtained by combining
the exact discrete representation of Ampere’s and Faraday’s
laws with suitable discrete Hodge operators – linear mappings
between discretized fields (viewed as differential forms) [4]–
[5]. The third idea is Trefftz approximations. By definition,
Trefftz functions satisfy the underlying differential equation
with the relevant boundary conditions and typically yield much
higher approximation accuracy of the solution than traditional
piecewise-polynomial bases. This has been successfully ex-
ploited in a variety of techniques including pseudospectral
methods, generalized FE and FD algorithms (e.g. [6]–[9]).

Homogenization (theory of effective material parameters)
of metamaterials indeed constitutes a new application area
for all these time-tested ideas. Metamaterials are periodic

dielectric/metal structures whose lattice cell size is smaller
than the vacuum wavelength but not vanishingly small, leading
to unusual resonant characteristics and intriguing effects (see
e.g. review [10]). Traditional homogenization methods that
work well when the lattice cell size a tends to zero may be
impossible to apply when the cell size is appreciable, which is
a necessary condition for the nontrivial physical behavior [11].
This motivates the non-asymptotic homogenization method of
[12]–[14]. The purpose of the present paper is to establish a
connection of this method with the theory of discrete Hodge
operators [4] and to compare different options for defining
such an operator.

II. Discrete Energy Hodge Operators
with Trefftz Calibration

We describe metamaterials, in the frequency domain, as
periodic structures with given intrinsic electromagnetic pa-
rameters ε(ω, r), µ(ω, r) within each lattice cell. The size of
a metamaterial sample is sufficiently large but finite. In the
absence of sources, Maxwell’s equations for the spatially-
rapid fields e,h,d,b are ∇ × e = − jωb; ∇ × h = jωd, with
d = εe, b = µh. The objective is to put forward a suitable
approximation of the rapid fields by coarse-grained ones, E,
H, D, B, and then to find the corresponding material tensor,
i.e. a linear map relating E, H, D, B. The critical constraint
is that Maxwell’s equations must hold on the coarse level,
∇ × E = − jωB; ∇ × H = jωD, along with a linear material
relation of the form L : (E,H)→ (D,B). One may seek L as

D = εeffE + ξH; B = µeffH + ζE

where εeff , ξ, ζ, µeff are in general tensorial. This relationship
includes magnetoelectric coupling parameters ξ, ζ commonly
used in metamaterial science; note, however, that the linear
map L can be even more general and may represent a nonlocal
relationship [14], when fields at a given point depend on fields
in its neighborhood. The reciprocity (ξ = ζ∗) may or may not
be explicitly built into the model a priori.

The fact that the coarse-grained fields must satisfy
Maxwell’s equations dictates that E,H ∈ Hcurl(Ω); D,B ∈



Hdiv(Ω). where Hcurl and Hdiv are standard spaces of square-
integrable complex functions with a square-integrable curl or
div, respectively, in a given computational domain Ω.

There are three key ingredients in the overall homogeniza-
tion procedure: (i) The approximation space for fields. We
focus on Trefftz bases due to their excellent approximation
properties, as evidenced by extensive experience [8]. (ii) Div-
and curl-conforming interpolations Icurl and Idiv from the field
circulations and fluxes on the boundary of a lattice cell into its
volume. Whitney-like interpolation is a natural choice, lattice
cells being analogous to edge/face “elements”. Alternatively,
div- and curl-conforming Trefftz interpolations can also be
considered. (iii) The linear map L that, in the language of
differential forms, is equivalent to a discrete Hodge operator
[4].

Depending on one’s choices in the items above, one obtains
a family of homogenization procedures similar in principle
but different with respect to complexity and accuracy. One
possibility is a “Galerkin Hodge” based on constant material
properties, whereby the bilinear forms corresponding to the
problems on the fine and coarse levels are required to be equal
for all test (“calibration”) fields in a suitable Trefftz subspace
T (C) of all fields in a cell C:

F EH(ψEH , ψ̃EH) l.s.
= F eh(ψeh, ψ̃eh), ψ̃, ψ̃eh ∈ T (C) (1)

with ψE = Icurlψ
e; ψH = Icurlψ

h, where ψEH is a vector
combining the coarse fields E, H, and similarly for ψeh; the
tilde sign denotes test functions. ‘l.s.’ in (1) indicates a least
squares solution in a fixed trial space. The Trefftz space T (C)
may be spanned e.g. by a set of Bloch waves traveling in
different directions. The bilinear forms above are defined as

F (ψEH , ψ̃EH) = (εeffψ
E , ψ̃E)+(ζψH , ψ̃E)+(ξψE , ψ̃H)+(µeffψ

H , ψ̃H)

F eh(ψeh, ψ̃eh) = (εψe, ψ̃e) + (µψh, ψ̃h)

Here (· , ·) is the L2 inner product in the lattice cell.

III. A Numerical Example

As an illustrative example, we consider wave propagation
through a layered slab; an exact analytical solution is avail-
able in this case for comparison and error estimation. The
lattice cell contains two nonmagnetic layers with the widths
w1 = 0.75, w2 = 0.25 (the cell size a = 1) and permittivities
ε1 = 1, ε2 = 4, respectively. The speed of light is normalized
to unity. The thickness of the slab is d = 20, and incidence
is normal. The Trefftz calibration space T (C) in this case
is spanned by two independent waves that are easy to find
analytically. The interpolation space is also chosen to be
spanned by Trefftz functions, but those that correspond to
a homogeneous medium inside the cell. This can be shown
to produce not only an “ideal Galerkin” scheme with a zero
consistency error but also “ideal” effective parameters of the
slab for which transmission/reflection are modeled exactly
(error at the roundoff level in Fig. 1). In contrast, the quasi-
static material tensor εstatic = w1ε1 + w2ε2, µstatic = 1 leads to
significant errors and ultimately to meaningless results as the

Figure 1: Error in the trans-
mission coefficient: roundoff

level for proposed homoge-
nization (red) vs. static mate-
rial tensor (blue).

Figure 2: Material parame-
ters obtained by Trefftz cali-
bration. Blue: Re εeff , black:
Re µeff , magenta: |ζ | = |ξ|.

frequency increases (Fig. 1). Material parameters obtained by
Trefftz homogenization are shown in Fig. 2.

IV. Conclusion
A new homogenization framework for electromagnetic

metamaterials includes Trefftz approximations of the fields,
div- and curl-conforming interpolations, and the respective
discrete Hodge operators. Several options for the Hodge are
considered and will be further discussed in an extended paper.
Unlike traditional homogenization techniques, the proposed
approach is non-asymptotic, i.e. applicable to arbitrary lattice
cell sizes, not necessarily vanishingly small.
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