
Abstract—In this paper, we present a volume integral 
formulation to compute eddy currents in non-magnetic 
conductors using facet elements. In the approach, the conductors 
are meshed by finite elements. Each mesh element is then 
considered as a lumped element of an electrical equivalent circuit. 
An algorithm detecting the independent loops is finally used for 
the circuit resolution. The formulation is validated thanks to a 
multiply connected regions problem. 

Index Terms— Approximation methods, eddy currents, 
Integral equation method. 

I. INTRODUCTION 

Facet elements have been developed to model magnetostatic 
problems for the finite element method [1] and for the integral 
equations method [2], [3]. Using the facet interpolation, 
different unknown can be approximated, such as the current in 
[1], [3] and the magnetization in [2]. This approach seems very 
powerful as it allows both incorporating different geometrical 
structures and lumped elements of electrical network within a 
unified integral formulation.  

The PEEC method (Partial Element Equivalent Circuit) is 
mainly used for the modeling of complex interconnection and 
can be applied to a large range of devices where the air region 
is dominant [4]. However, the classical PEEC method does not 
enable the 3D modeling of conductive. 

This paper proposes a genaralisation of the classical 
inductive PEEC formulation using facet elements. An 
equivalent electrical circuit, whose branches are the facets and 
the nodes of these branches are the centroid of elements of 
mesh, is proposed. 

II.  THE INTEGRAL FORMULATION 

A. Problem description 

Eddy current in conductive materials fit the classical PEEC 
formulation which is derived from the equation governing the 
total electric field at a point r inside the conductors: 
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where ΩC is conductive region, J is the current density, V is 
the scalar electric potential, σ is the material conductivity, µ0 is 
the vacuum permeability, and ω is the excitation pulse.  

B. System assembly 

With facet elements interpolation, the current density is 
described as follows:  

∑= fI.wJ f  

where wf is shape function and If is flux across the fth facet. 
The normal component of wf is conserved.  

Applying the Galerkine method to (1), a system of linear 
equations is obtained: 
                                    { } { }bfb UI].Z[ =                             (2) 

with [Zb] = [R]  + jω.[L]  

where: 
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Matrix [Zb] can be seen as the impedance matrix of the 
electrical equivalent circuit generated, [R]  is matrix of the 
resistance terms, and [L] is matrix of the mutual inductance 
terms. To avoid the singularity problem of [L] , we assume that 
the face to face interaction of the element onto itself equal to 
zero. 
We consider now the following equality: 
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where n is the outward normal vector on the boundary. The 
first term (I) vanishes inside the domain because wg.n is 
conserved and on the boundary, since the current is tangential. 
Moreover, (I) allows imposing V on a surface boundary. 

The second term (II): 
v

1
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Fig.1. Orientation of facet 

The sign (± ) depends on the orientation of facet. For 
example, in Fig.1, the facet g is oriented from the element a to 
the element b.  

C. Resolution of the electrical circuit 

It is not possible to solve directly the system of linear 
equations (2), because equations are not independent The 
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current density has to satisfy the several conditions. In the 
conductive region ΩC: 
                                       div J = 0                                      (3) 

 
and on its boundary CΩ∂  

                                        n.J = 0                                       (4) 
 

The current flux is represented by the facets. The facets are 
considered as the branches of an electrical circuit. The 
conditions of (3) and (4) will be ensured when applying a loop 
analysis. 

By using the independent loops search proposed in [5], we 
can write a new system of linear equations where the 
unknowns are the currents flowing in the loops :  

  { } { } { } { }sbmmm
t

b UU].M[I].Z[I].M].[Z].[M[ ===          (5)            

where [Zb] is a complex branch impedance matrix, [Zm] is a 
complex loop-based impedance matrix, {Im} is a vector of 
independent loop-based currents, [M]  is the incidence matrix 
(branch – fundamental independent loop matrix) where the 
value of each element can be  -1, 0 or 1, {Us} is the vector of 
source voltages (most  of the time is equal to 0), and the size 
of { Im} is the number of fundamental loops. Once the problem 
is solved, we can obtain the currents flowing on each branch 
by the following relationship: 

{ Ib} = [M t].{ Im} 

III.  NUMERICAL EXAMPLE 

In order to validate the proposed formulation and to show 
its performances, we consider an example with a multiply 
connected region. The results will be compared to those 
obtained with FLUX [6], a commercial Finie Element Method 
(FEM) program. 

In this example, we compute the eddy currents in a 
conductive disk with a hole (σ  = 6e+7 S/m) which is placed 
genrated by a loop conductor (Fig.2). This conductor is fed by 
a current source. 

 

 
Fig.2. Geometry considered 

Parameter (m) : 
Rext = 0.5 
Rint = Rext/3 
RS = 0.3 
h = 0.1 
Thickness of disk = 0.01 
 

In this case, with the presence of current source, the equations 
in system (2) need to be adapted. We must add a mutual term:  

                   { } { } { }bSfb UI].Mu[I].Z[ =+                         (6) 

where {I S} is current flowing in the conductor and [Mu]  is the 
matrix of mutual inductance between the circuit loop and each 
facet element: 
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where t0k is unit vector defining the current direction. Note that 
for the case {Ub} = {0}, (6) becomes: 

{ } { }Sfb I].Mu[I].Z[ −=  

and we have a the system of linear equations to solve as 
follows: 
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We focus on the computed eddy current distribution and 
loss in the disk (Fig.3 and Tab.1).  

 

 
Fig.3. Eddy current distribution in 

the disk considered (δ/∆R ≈ 0.2) 

The new formulation has 
been modelled in the 
case of a skin depth such 
as δ/∆R ≈ 0.2. The 
accuracy is very similar 
to FEM 3D and the 
solution has a small 
relative error compared 
to the FEM 2D.  

Moreover, the convergence of the results is quickly reached 
with the new formulation. We can obtain it with a smaller 
number of elements in the disk than the FEM 3D. 

TABLE I 
RELATIVE ERROR OF OUR FORMULATIONS COMPARED TO THE 

FEM SOLUTION  

δ/∆R ≈ 0.2 
Method 

Joules Loss(W) Diff. (%) 

FEM 2D 5.35E-7 Ref. 
FEM 3D with  
1.400.000 elements 

5.38E-7 0.69 

New formulation  
with 3000 elements 

5.38E-7 0.69 

IV.  CONCLUSION 

In this paper, we have presented an eddy currents volume 
integral formulation using facet elements in nonmagnetic 
conductors. The formulation produces very similar results in 
the comparison with the FEM and allows the treatment of 
multiply connected domains. In the future, we can improve this 
formulation by using matrix compression techniques in order 
to save memory and to reduce the computation time. 
Moreover, we will to improve the accuracy by using analytical 
correction to treat the singularity of the mutual inductance 
terms. 
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