
 

Abstract— In this paper, the performance of a parallel sparse 

direct solver on a shared memory multicore system is presented. 

Large size test matrices arising from finite element simulation of 

induction heating industrial applications are used in order to 

evaluate the performance improvements due to low-rank 

representations and multicore parallelization. 

Index Terms— Eddy currents, finite element methods, sparse 

matrices, parallel algorithms, approximation algorithms. 

I. INTRODUCTION 

In 3D finite element simulation of induction heating 

processes, the solution time is a limiting factor in the design 

and optimization of new devices. Time-harmonic 

electromagnetic problems coupled with thermal problems are 

solved in sequence, and the linear system solution in the 

electromagnetic problem is often the bottleneck. Direct solvers 

are preferred to iterative ones when convergence and stability 

issues. Therefore, an efficient direct method to solve large 

sparse complex matrices should exploit parallelization and 

reduce memory consumption. In this paper, a reduction of 

memory requirements through low-rank techniques and 

factorization times through shared memory parallelism in 

MUMPS (MUltifrontal Massively Parallel sparse direct 

Solver) will be discussed [2]. Matrices arise from the 

modelization of induction heating industrial devices. Heating 

of a susceptor by pancake coils and gear induction hardening 

are taken as test benchmarks. Geometric model design, 

meshing and matrix building are performed by a commercial 

software [3]. Starting from the same geometry (Pancake or 

Gear), meshes are gradually refined in order to solve problems 

of different sizes leading to matrices ranging from 320k to 

1.5M degrees of freedom. 

 

 
Fig. 1. Geometry of the pancake coil 

 

 

  
Fig. 2. The figure represents only a slice of the whole inductor and workpiece 

geometry because of symmetries 

 
TABLE I 

TESTED MATRICES 

Test matrix Pancake 1 Pancake 2 Pancake 3 Pancake 4 Gear 1 

Degrees of 

freedom 
320k 630k 1M 1.5M 370k 

Number of 

entries in LU 

factors 

990M 2.1G 5.2G 8.7G 700M 

 

II. IMPROVEMENTS BY LOW-RANK APPROXIMATION 

TECHNIQUES 

A low-rank matrix can be represented in a form which 

decreases its memory requirements and the complexity of 

basic linear algebra operations it is involved in, such as matrix-

matrix products. This is formalized by Definition 3.1 in [6]. 

Let A be a matrix of size m × n. Let kε be the approximated 

numerical rank of A at accuracy ε. A is said to be a low-rank 

matrix if three matrices W of size m × kε , Z of size n × kε and 

E of size m × n exist such that : 

 

EZWA T  .                 (1) 

 

where ||E||
2
 ≤ ε and kε (m + n) < mn. 

kε is commonly referred to as the numerical rank at precision ε 

and can be computed, together with W and Z with a Rank-

Revealing QR (RRQR) factorization. Low-rank approximation 

techniques are based upon the idea to ignore E and simply 

represent A as the product of W  and Z
T
, at accuracy ε. 

In practice, matrices coming from applicative problems are 

not low-rank, which means that they cannot be directly 

approximated. However, low-rank approximations can be 

performed on sub-blocks defined by an appropriately chosen 

partitioning of matrix indices [5]. Theoretical studies based on 

mathematical properties of the underlying operators have 

shown that variable sets that are far away in the domain tend to 
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exhibit weak interactions, and the corresponding matrix block 

has a low rank. To benefit from this property, a new low-rank 

format called Block Low-Rank (BLR) has been developed and 

exploited within internal data structures of the multifrontal 

method used in the MUMPS software, in order to decrease the 

memory consumption and the operation count of the solver. 

Preliminary results show that the described method is more 

efficient on large problems, which is a good property in the 

context of large scale computing. As reported in Table 2, in 

two test cases the memory footprint is reduced by a factor 

almost of three and the complexity is almost halved. A few 

steps of iterative refinement are performed to recover full 

precision from the original approximated precision. 

 
TABLE II 

LOW-RANK IMPROVEMENTS 

Test matrix Pancake 2  Pancake 4 

LR threshold ε 10-8  10-10 10-14 

Memory saved for factors 

storage 
35% 

 
34% 14% 

Operations saved for 

factorization 
60% 

 
60% 29% 

Scaled residual 2.3 x 10-16  1 x 10-12 3.5 x 10-16 

 

III. IMPROVEMENTS OF SHARED MEMORY PARALLELISM IN 

MUMPS 

In order to solve a linear system, the multifrontal method 

transforms the initial sparse matrix into an elimination tree of 

much smaller dense matrices.  This tree is traversed in a 

topological order and each node is computed following a 

partial LU decomposition.  Then, a two-pass solve operation is 

applied on each node of the tree in order to find the solution of 

the original system. 

The structure of the tree offers an inner parallelism, called 

tree parallelism, in which different processes work on data 

subsets, on different nodes of a network. This kind of 

parallelism is already exploited by MUMPS in distributed 

memory environments [5]. However, in shared memory 

environments, only node parallelism is applied: many 

processes collaborate on the decomposition, working on the 

same node.  In this approach, threaded BLAS libraries are 

preferred in order to parallelize dense matrix operations.  In 

order to go further, the fork-join model of parallelism has been 

implemented in code based on OpenMP directives. Our first 

goal was then to exploit tree parallelism in shared memory 

environments, by adopting algorithms commonly used in 

distributed memory environments and by rearranging them to 

multithreading. Therefore, the so called AlgL0 algorithm 

consists in finding a separating layer in the tree, called L0, 

such that node parallelism will still be applied above it, but 

tree parallelism will be applied under it through OpenMP. The 

use of adequate memory mapping policies allows to improve 

the performance of MUMPS on SMP (Symmetric Multi 

Processor) and NUMA (Non-Uniform Memory Access) 

architectures. The localalloc policy, which consists in mapping 

the memory pages on the local memory of the processor that 

first touches them, is applied on data structures used under L0, 

in order to achieve a better data locality and cache 

exploitation. The interleave policy, which consists in 

allocating the memory pages on all memory banks in a round-

robin fashion such that the allocated memory is spread over all 

the physical memory, has been used on data structures above 

L0 in order to improve the bandwidth. 

Both MUMPS 4.10.0 and MUMPS 4.10.0 with new AlgL0 

algorithm have been tested on the set of test matrices, with the 

stated memory allocation techniques. As reported in Table 3, 

this approach brings a remarkable reduction of computational 

time on all matrices even if it tends to decrease on large 

matrices, because the portion of work in the top of the tree 

(above L0) increases in comparison to the workload in the 

bottom of the tree.  Furthermore, this gain is expected to rise 

through the use of the interleave policy. 

 
TABLE III 

TIME SAVE BY USING  MUMPS 4.10.0 WITH ALGL0 ALGORITHM 

Test matrix Pancake 1 Pancake 2 Pancake 3 Gear 1 

Time saving 13% 11% 8% 21% 

IV. CONCLUSIONS 

Significant improvements of parallel sparse direct solver 

MUMPS have been successfully tested in 3D numerical 

simulation of industrial applications of induction heating. 

Preliminary results show a remarkable reduction of both 

memory usage and number of operations to be performed. 

Furthermore, both tree and node parallelism are exploited in 

order to reduce the solution time. 
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