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Abstract—This article details a novel energetic approach for
achieving stable higher order discretizations of constitutive equa-
tions in the Finite Integration Technique (FIT) and in its cousin,
the Cell Method (CM), in the basic case of two-dimensional
discretization of frequency domain electromagnetic problems
over pairs of non-uniform Cartesian dual grids.

Index Terms—Computational electromagnetics, Finite Integra-
tion Technique, Cell Methods, Higher Order Discretization.

I. I NTRODUCTION

FIT and CM are discretization methods variously applied
in computational electromagnetics. As it is well known, these
methods are based on the discretization of space by means
of a pair ofdual grids. Integral electromagnetic quantities are
associated to proper oriented geometric elements of the dual
grids in such a way that electromagnetic balance equations can
be naturally discretized as exact equations. The discretization
of constitutive equations is the key point as it is the sole
responsible of the accuracy and stability properties of the
numerical method [1]. Various efforts are reported in literature
for discretizing constitutive equations over different classes of
dual grids. A particularly convenient approach is theenergetic
method introduced in [2], since it theoretically ensures con-
sistency, stability and convergence of the discretizations over
arbitrary polyhedral dual grids [3], [4].

Despite many recent results reported in literature for dis-
cretizing constitutive equations, virtually no clue [5] exists
on how to increase the order of discretization with respect
to the first order. In this paper this problem is attacked by a
novel approach which extends the energetic method [2]. The
details of such approach are provided in the basic case of
the second-order discretization of constitutive equations over
pairs of non-uniform Cartesian dual grids for two-dimensional
frequency domain electromagnetic problems.

II. SECOND ORDER DISCRETIZATION OFCONSTITUTIVE

EQUATIONS

A two-dimensional electromagnetic problem in the fre-
quency domain is analyzed within the spacial regionΩ.
Without loss of generality, let the electric fieldE(r) and the
electric displacementD(r), functions of the position vector
r = (x, y), be tangent toΩ, and let the magnetic fieldH(r)
and the magnetic inductionB(r) be normal toΩ.

The Ω region is discretized by a Cartesian primal gridG
and a Cartesian dual grid̃G and degrees of freedom (dofs) are
introduced as follows. Lete be the array of the circulations
ei of E(r) along thene edges ofG and letb be the array of
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Figure 1: Pair of dual gridsG, G̃. Oriented primal edges1, 2
and oriented primal face1 are outlined.

the fluxesbi of B(r) across thenf faces ofG. Also let d̃ be
the array of the fluxes̃di of D(r) across thenẽ = ne edges
of G̃ and let h̃ be the arrayh̃i of the normal component of
H(r) at thenñ = nf nodes ofG̃.

Faraday’s equation and Ampère-Maxwell equation can be
exactly written in terms of the introduced dofs. A stable second
order discretization of constitutive equations can be achieved
as follows. Let it be assumed thatG is composed of four
congruent squares of edge length1 and thatG̃ is determined by
theξ coordinate, as shown in Fig. 1. The general case in which
this simple pair of dual grids is independently scaled alongthe
x and y directions and assembled to form non-uniform pairs
of larger Cartesian dual grids follow from this case.

Let w
i
e(r), with i = 1, . . . ne = 12, be a set of basis

functions allowing to exactly reconstruct any affine fieldE(r)
from its circulationsei and letwi

f (r), with i = 1, . . . nf = 4,
be a set of basis functions allowing to exactly reconstruct any
affine fieldB(r) from its fluxesbi. Referring to Fig. 1, it can
be assumed

w
1

e(x, y) = ay (−x/2 + P(x)/2)(1/2− y), (1)

w
2

e(x, y) = ay (1 − P(x))(1/2− y), (2)

w
1

f (x, y) = az (1/2− x)(1/2− y), (3)

in which ay, az are unit vectors directed as they andz axes
andP(x) is any function such that

P(0) = 0, (4)

P(1) = 1, (5)

P(−x) = P(x). (6)

The basis functions for the other edges and faces can be
straightforwardly derived from (1)-(3) as a consequence of
geometrical symmetry.



Let Fx by the vector space determined by the three func-
tions −x/2 + P(x)/2, 1 − P(x) andx/2 + P(x)/2 and let
Lx be alinear functional of functionsf(x) such that

Lx (1) = 2, (7)

Lx (f(x)) = 0 if f(x) = −f(−x), (8)

Lx (f
2(x)) ≥ 0, (9)

Lx (f
2(x)) = 0 andf(x) ∈ Fx implies f(x) = 0. (10)

It is noted thatLx can be written in the form

Lx (f(x)) =

∫ 1

−1

Qx(x)f(x) dx

in whichQx(x) is either a function or a generalized function.
Let nowLx = Ly and let the linear functionalL = Lx ◦ Ly

be introduced for functionsg(x, y), so that

L(g(x, y)) =
∫ 1

−1

Qx(x)dx

∫ 1

−1

Qy(y)g(x, y)dy.

This functional is a second order approximation of the inte-
gration operator overΩ. The elements

mij
ε
= L(wi

e(r) · ¯̄ε(r)wj
e(r)),

of matrix Mε, with i, j = 1, . . . , ne = 12, and the elements

mij
ν
= L(wi

f (r) · ¯̄ν(r)wj
f (r)),

of matrix Mν , with i, j = 1, . . . , nf = 4, can now be
determined as functions of the electric permittivity¯̄ε(r) and
magnetic reluctivity¯̄ν(r), assumed to be symmetric, positive
definite tensors. These expressions differ from those of the
energetic approach [2] just in the substitution of the integration
operator overΩ with L. With proper choices ofξ, P and
Qx = Qy, equations

d̃ = Mεe, (11)

h̃ = Mνb, (12)

determine stable, second order discretizations of constitutive
equations. In fact the following properties can be easily
proven.

Property 1: Equations (11), (12)exactlytransforms the cir-
culations ofE(r) along the edges ofG into the fluxes ofD(r)
through the edges of̃G and the fluxes ofB(r) across the faces
of G into the components ofH(r) at the nodes of̃G, for all
affinefields, if and only if it is

ξ = (
√
5− 1)/2, (13)

Lx(x
2) = ξ, (14)

Lx(P(x)/2) = 1− ξ. (15)

Property 2: MatricesMε, Mν are symmetric, positive def-
inite.

Infinite choices ofP andQx = Qy can be made in such a
way that all properties (4)-(10) and (13)-(15) are satisfied. A
simple choice is

P(x) = |x|, (16)

Qx(x) = c
−ηδ(x+ η) + c0δ(x) + cηδ(x− η), (17)
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Figure 2: Relative error in maximum norm of dofse, b, d̃, h̃,
with respect tohM .

in which δ is Dirac’s delta and

η = (1 + ξ)/2,

c0 = 6− 8ξ,

c
−η = cη = 4ξ − 2.

It can be noted that in all situations the dual edges define
golden sections of the primal edges, as established by (13). It
can also be observed that the same set of conditions (7)-(10)
and (13)-(15) leads to stable second order discretizationsof
both the electric and magnetic constitutive equations. Lastly,
it is noted that itcannot be assumedQx = Qy = 1, since (14)
would not be satisfied. As a result the integration operator over
Ω used in the energetic approach [2] for achieving stable first
order discretizations of constitutive equationscannot be em-
ployed also for stable second order discretizations. Conversely
its second order approximationL can be used.

III. N UMERICAL RESULTS

A TM10 is injected into a section of rectangular waveguide
terminated by a PEC. The discretization (16), (17) is applied
to non-uniform Cartesian grids with decreasing maximum
diametershM . As expected, the relative errors ofall dofs e,
b, d̃, h̃ exhibit second order convergence, as shown in Fig. 2.

IV. CONCLUSIONS

The full paper will include complete proofs and more details
of the numerical analysis.
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