
Abstract— Many local two-level algorithms have been 

proposed for accelerating the electromagnetic optimization by 

stochastic algorithms. These algorithms use a combination of a 

coarse and a fine model in the optimization procedure. Despite of 

the good results, the global convergence properties represent an 

important drawback of these approaches. A global two-level 

algorithm has been proposed to deal with the convergence 

problems, but the requirement of refine the global surrogate 

model in each step remain as a point to be improved. This work 

introduces a global two-level genetic algorithm that uses single 

predefined coarse and fine surrogate models, which are defined as 

an artificial neural network non-linear regression of a 

preliminary set of finite element simulations. The problem dealing 

with the 8 parameters design of superconducting magnetic energy 

storage has been analyzed. 

Index Terms— Genetic algorithms, Optimization methods, 

Metamodeling, Principal component analysis. 

I. INTRODUCTION 

The application of stochastic optimization algorithms, such 

as Genetic Algorithms (GA), to electromagnetic optimization 

problems is widespread. In general, the approaches are based 

on the construction of a surrogate model, which interpolate 

preliminary Finite Element simulations. In order to reach an 

optimal or near-optimal solution these algorithms usually 

require many model evaluations, demanding a reasonably 

computational time.  

Many local two-level algorithms have been proposed for 

accelerating the electromagnetic optimization [1]-[3]. These 

algorithms use a combination of a coarse and a fine model in 

the optimization procedure. The coarse model is created based 

on some evaluations of the fine model and its accuracy 

strongly influences the convergence. Moreover, the local 

coarse model should be built in each iteration which represents 

an important drawback of these approaches.  

A global two-level algorithm was proposed in [4] to deal 

with the convergence problems, but the requirement of refine 

the global surrogate model in each step remain as a point to be 

improved.  

Therefore, we introduce a global two-level genetic 

algorithm that uses single predefined coarse and fine artificial 

neural network surrogate models. The fine surrogate model is 

defined as a non-linear regression of a preliminary set of 

simulations, which are performed according to an experimental 

central composite design [5]. The coarse model is build as an 

approximation of the five model in an appropriate subspace.  

II. NEURAL NETWORK MODEL 

An artificial neural network (ANN) consists of an artificial 

intelligence technique inspired by the structure and working of 

the human brain. An ANN is composed by interconnected 

elements, called artificial neurons, which are responsible for 

processing information [6]. The multi-layer perceptron (MLP), 

an ANN model widely known and used in pattern recognition 

tasks, is characterized by having, in addition to the input layer 

and output layer, one or more hidden layers that enable the 

network to map input patterns with similar structures for 

different outputs. To make this possible, the hidden layers act 

as feature detectors while the output layer has the function to 

receive the stimulus of the last hidden layer and build standard 

that will be the answer. Usually, for training MLP model, the 

supervised algorithm called back propagation is used. It is a 

learning algorithm based on error correction in which the 

training is performed in two phases: first, when a pattern is 

presented to the network through the input layer, the activation 

signal is propagated layer by layer, until the response is 

produced by the output layer. In the second phase, the 

obtained output is compared to desired output for this 

particular pattern producing an error signal. This error signal is 

then propagated from the output layer to input layer and the 

synaptic weights are being adjusted so that the response of the 

network approximates the desired response [6]. 

III. PRINCIPAL COMPONENTS SUBSPACE 

The Principal Components Analysis (PCA) is a way of 

identifying patterns in data and expressing the data in a 

subspace by reducing the number of dimensions [7]. The 

method works as defined in the following steps: 

Step 1: get some data - a set of design parameter e 

respective answers form the fine surrogate model. 

Step 2: subtract the mean - subtract the average across each 

dimension in order to produce a data set whose mean is zero.  

Step 3: calculate the covariance matrix. 

Step 4: calculate the eigenvectors and eigenvalues of the 

covariance matrix.  

Step 5: choosing the principal component - the 

eingenvectors with the highest eigenvalues have more 

significance. The notion of reduced dimensionality comes by 

ignoring the components of lesser significance. 

Step 6: deriving the new data set - the projections of the 

original data on the principal components subspace. 
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IV. THE TWO-LEVEL GA 

As in any multilevel approach some important ingredients 

should be defined: 

Fine model: it is defined as a neural network non-linear 

regression model from a preliminary set of finite element 

simulations. The simulations were performed according to an 

appropriate experimental design in order to reduce the number 

of finite element runs. 

Global coarse model: a set of design optimization 

parameters and the respective answers from the fine model is 

projected into the principal components subspace. The 

resulting new data set is used to training a coarse neural 

network model. 

Prolongation and restrictions operators: the matrix formed 

by the principal components in the columns can be used to 

project the data in the subspace. The prolongation is 

accomplished just taken the transpose of the matrix and 

multiply it by the data to be transferred. 

Fine and coarse optimization procedures: a combination 

of the usual GA is used here. After some iterations in the fine 

level the individuals are projected on the principal components 

subspace where a new GA search take place to find a 

approximation of the solution, which is refined in the fine 

level. This two-level procedure is illustrated in Fig. 1. 
Evolve GA population for some 

generations (fine model)

Restriction 

using PCA

Evolve projected GA 

population 

(coarse model)

Prolongation 

using PCA

Refine the best coarse 

approximations of the solution

Evolve GA population for some 

generations (fine model)

Restriction 

using PCA

Evolve projected GA 

population 

(coarse model)

Prolongation 

using PCA

Refine the best coarse 

approximations of the solution

 
Fig. 1. Two-level optimization procedure 

V. NUMERICAL PROBLEM 

The problem analyzed in this work deals with the 8 

parameters design of Superconducting Magnetic Energy 

Storage (SMES) as completely described in [8]. This is the 

well know benchmark TEAM Workshop problem 22. 

The two objectives regarding to the energy and the stray 

field requirements are mapped into a single objective function 

and the constraints are handle by a penalty approach.  

VI. INITIAL RESULTS 

A. The Finite Element Simulations 

The Ansys Maxwell finite element method analysis tool 

was used in the simulations. Since the problem has axial 

symmetry, the “Cylindrical about Z” magnetostatics solver was 

used. A parametric sweep with the required values was 

performed and the objective function calculated for each 

variation. For validation purposes, results were compared for 

optimal solution found in [8]. Additionally, another finite 

element analysis software (FEMM) was used in the validation 

process, and the obtained results were coherent with those 

obtained with Ansys Maxwell. 

Even though no permeable material is present in this 

application, it was assumed that the superconductor and the 

background material have relative permeability of around 1.0, 

allowing the finite element analysis to be executed [9]. The 

obtained flux lines are presented in Fig. 2. 

 
Fig. 2. Flux lines for the SMES arrangement 

B. Neural network non-linear regression model 

In order to ANN training we used a set of 8 inputs xi 

(geometrical parameters) with their respective outputs yi 

obtained from 200 real experiments. As our aim is to solve a 

problem of non-linear regression, a logistic activation 

functions in neurons of hidden layers and a single neuron in 

the output layer with a linear activation function have been 

used. The constructed ANN has 8 input neurons, 40 neurons in 

5 hidden layers and 1 neuron in the output layer. In training 

was used 0.3 of learning rate. Furthermore, the traditional 

cross-validation technique has been used to validate the 

classifier performance [6]. The training error obtained for the 

built ANN is 1%. 

C. Partial Conclusion and Comments  

An appropriate experimental design can produce an 

accurate neural network model with a very small number of 

finite element simulations, in relation to the usual uniform grid 

approach. This is an important result for the application of the 

proposed two-level GA, which will be presented in the full 

paper. 
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