
Abstract—In order to find an efficient and accurate reliability 

calculation method for the electromagnetic problem, this paper 

presents a comparative study among different algorithms for 

reliability analysis. For the accuracy improvement of the 

sensitivity-assisted Monte Carlo simulation method, a hybrid 

direct differentiation-adjoint variable method is applied to 

calculate the second-order sensitivity in finite element analysis. 

The performance of each method is validated by application to 

one superconducting magnetic energy storage (SMES) system. 

Index Terms—Constraint feasibility, design sensitivity analysis, 

reliability calculation. 

I. INTRODUCTION 

Recently, a reliability-based design optimization (RBDO) 

has been applied to the optimal design of electromagnetic 

devices to maintain the design feasibility even with uncertain 

design variables [1],[2]. 

For the reliability analysis, there are mainly two kinds of 

methods generally applied in the mechanical engineering: 1) 

optimization-based method such as reliability index approach 

(RIA) [1] and performance measure approach (PMA) [3]; 2) 

sampling-based method such as Monte Carlo simulation 

(MCS) [3]. Both the RIA and the PMA need an independent 

optimization loop, while the MCS needs as much samples as 

possible (one million). The electromagnetic problem, however, 

normally involves a performance analysis by numerical 

method such as the finite element method (FEM). To widely 

apply the RBDO in the electrical engineering, it is essential to 

investigate characteristics of different reliability algorithms 

and find one efficient reliability assessment algorithm. 

In the previous research [2], we proposed a sensitivity-

assisted Monte Carlo simulation (SA-MCS) to fast evaluate 

reliability. Due to the fist-order approximation, however, it 

looks insufficient when the researched problems involve 

bigger uncertainties or the performance constraint functions 

are strongly nonlinear. 

This paper makes a comparative investigation of reliability 

analysis. Furthermore, for improvement of the SA-MCS, the 

second-order sensitivity-assisted MCS method is proposed, 

where the second-order design sensitivity is implemented by 

the hybrid direct differentiation-adjoint variable method. 

II. RELIABILITY ANALYSIS  

Hereinafter, all variables are treated as uncertain ones and 

independently follow Gaussian distribution with means (μ), 

and standard deviations (σ), x~N(μ, σ). The domain decided 

by constraint g(x)0 represents the feasible region. The direct 

definition of reliability involves multi-dimensional integral of 

probabilistic distribution, which is very difficult. As a result, 

many equivalent approximations have come into being. 

A. Reliability Index Approach 

The reliability analysis of RIA is implemented as follows: 

Step 1: Transfer the uncertain variables (x) into the 

standard normalized ones (u) using:  

( )u= x-  . (1) 

Step 2:  Find the most probable point of failure (MPPF) on 

the constraint curve by solving one optimization problem [1]: 

Minimize
subject to ( ) 0.g 

u

u
 (2) 

Step 3: Calculate reliability index β and reliability R: 

1 ( ), and =R   *u   (3) 

where u* is the optimal solution of (2) and Ф() is the standard 

normal density function. 

B. Performance Measure Approach 

Compared with the RIA, the MPPF of the PMA under a 

specified reliability index βt is obtained by solving problem: 

Maximize ( )
subject to .

t

g


u
u

 (4) 

The PMA is faster than the RIA, however, it only determines 

whether a solution is reliable or not against constraint 

satisfaction with respect to a specified reliability index.  

C. Sensitivity-Assisted Monte Carlo Simulation 

For a specified design x, the reliability with respect to the 

performance constraint g(x)0, is evaluated as follows:  

Step 1: Execute performance and sensitivity analysis by the 

FEM for uncertain design variables. 

Step 2: In the uncertainty set U(x) defined in [2], generate N 

test designs () following the probability distribution. 

Step 3: Calculate constraint of each test design by using: 

( ) ( ) ( ) ( )g g g    ξ x x ξ x  (5) 

where g(x) is the gradient vector. 

Step 4: Evaluate reliability R(g(x)0) by the MCS as:  

   
1

( ) 0 ( )
N

ii
R g I g N


 x ξ  (6a) 

 ( ) 1 ( ) 0.
i i

I g if g ξ ξ  (6b) 

If only the first-order derivative is included in (5), the above 

method is called the first-order sensitivity-assisted MCS (FSA-
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MCS); To obtain higher accuracy, we develop the second-

order design sensitivity by the FEM, and suggest the second-

order sensitivity-assisted MCS (SSA-MCS) approach.  

III. SECOND-ORDER SENSITIVITY ANALYSIS BY FEM 

The second-order sensitivity of constraint g(x)0 with 

respect to design parameters pi and pj is derived as follows: 
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where [A] is the magnetic vector potential and [Ã ] is the 

converged solution of system equation [K][A]={Q}; [K] and 

{Q} are the stiffness matrix and the forcing vector, 

respectively; [p] is related with nodal mesh. The derivative 

d[A]/dpi in (7) is obtained by applying the direct differentiation 

method to [K][A]={Q} as follows: 
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In (7), the adjoint variable [λ] is obtained by solving: 

[ ][ ] [ ].K g A    (9) 

In addition, constraint function related terms are problem 

dependent and can be evaluated analytically. The above 

algorithm is the hybrid direct differentiation-adjoint variable 

method due to usages of (8) and (9). Its computational 

complexity is linearly proportional to the number of design 

parameters (t) and needs (t+2) FEM calls [4]. 

IV. NUMERICAL CALCULATION RESULTS 

A. Analytic Example 

For performance comparison, a constraint function with 

strong nonlinearity is selected as follows: 

2 3 4( ) 1 ( 6) ( 6) 0.6( 6) 0g s s s t        x  (10) 

where 0x1,x210, s=ax1+bx2, and t=bx1-ax2 (a=0.9063, 

b=0.4226). In the strongly nonlinear area, three different 

designs are selected as marked in Fig. 1. The reliability 

analyses by different methods are compared in Table I. Taking 

the reliability of the conventional MCS method as a reference 

R0, and the relative error (δR) of reliability R from other 

methods is defined as δR=|R-R0|/ R0100%. From Table I, it is 

obvious that due to the linear approximation, the FSA-MCS 

and the RIA cannot give the accurate reliability even under a 

small uncertainty such as σ=0.2, however, the SSA-MCS can 

still give a higher accuracy with the maximum relative error of 

3.87% when uncertainty is increased to σ=0.3. 

Therefore, we can conclude that the second-order 

sensitivity analysis is very essential for the strong nonlinear 

constraint function approximation. The SSA-MCS owns wider 

application space than the RIA and the FSA-MCS. It can be 

expected to improve the quality of optimal design in the 

reliability-based design optimization.  

B. Superconductivity Magnetic Energy Storage System 

For the SMES system [5], quenching condition of 

superconducting coil is selected as the performance constraint 

to test reliabilities of published optimal designs [5]-[8]: 

,
( ) 6.4 54.0 0, 1,2

i m i i
g B J i     x  (11) 

where the symbols are defined in [5]. The x = [R2, H2, D2]
T
 are 

treated as uncertain variables. The 10,000 maximum test 

designs and confidence level of 0.95 are applied in the MCS 

based methods. Table II shows the reliability results with 

σ=[15.3, 10, 10]
T
 (mm). It can be seen that results of the SSA-

MCS method match well with the MCS method. The detail 

characteristics of the PMA will be discussed in the full paper.  
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Fig. 1. Analytic example and target designs. 

TABLE I 

COMPARISON OF RELIABILITY CALCULATION 
a 

σ Method 
Design A 

 
Design B 

 
Design C 

R δR (%) R δR (%) R δR (%) 

0.1 

RIA  0.9612 1.908 

 

0.8817 2.682 

 

0.9757 2.205 

FSA-MCS 0.9914 1.174 0.8863 2.174 0.9999 0.221 

SSA-MCS 0.9830 0.316 0.9051 0.099 0.9944 0.331 

MCS 0.9799  0.9060  0.9977  

0.2 

RIA 0.8112 5.942 

 

0.7230 3.484 

 

0.8380 6.116 

FSA-MCS 0.8662 13.125 0.7223 3.578 0.9284 17.564 

SSA-MCS 0.7632 0.327 0.7471 0.267 0.7953 0.709 

MCS 0.7657  0.7491  0.7897  

0.3 

RIA 0.7218 15.952 

 

0.6534 4.905 

 

0.7446 27.282 

FSA-MCS 0.7678 23.341 0.6525 5.036 0.8299 41.863 

SSA-MCS 0.5984 3.872 0.6827 0.640 0.5994 2.462 

MCS 0.6225  0.6871  0.5850  
a Test designs of the MCSs are 1,000,000 and confidence level is 0.95. 

TABLE II 

RESULT OF RELIABILITY CALCULATION 

Ref 
Optimal design x [m]  Reliability of g2(x) a 

R2 H2 D2  RIA FSA-MCS SSA-MCS MCS 

[5] 3.08 0.478 0.394  0.9899 0.9805 0.9807 0.9807 

[6] 3.05 0.492 0.400  0.7249 0.7200 0.7232 0.7231 

[7] 3.0988 0.5287 0.3903  0.6770 0.6679 0.6708 0.6716 

[8] 3.0197 0.6162 0.3496  0.5169 0.5158 0.5215 0.5210 
   a Reliability of g1(x) for all cases is 1.0. 
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