
Abstract— The Gravitational Search Algorithm (GSA) is novel 
metaheuristics approach inspired by the laws of gravitation and 
motion. In GSA, a set of agents, called masses, searches the 
design space in order to find the optimal solution by simulation of 
Newtonian laws of gravity and motion. In this work, a standard 
and an improved  GSA approach based on a quasi-oppositional 
approach are presented and tested on a magnetic pole design 
benchmark. Results indicate that the performance of proposed 
improved GSA on the magnetic pole design is better than the that 
of classical GSA. 

Index Terms— Optimization, electromagnetic optimization, 
gravitational search algorithm, magnetizer design, optimal 
magnetic pole design.  

I. INTRODUCTION 
A number of optimization methods have been applied over 

the years to electromagnetic problems [1], and many successes 
have been demonstrated for a large class of problems, 
including multidimensional and nonlinear ones. However, the 
optimization of non-convex and non-differentiable objective 
functions is still an open challenge for researchers. 

During the last few decades there has been a steady research 
interest in metaheuristics such as evolutionary algorithms [2] 
and swarm intelligence [3] which have been shown to be quite 
robust for many applications. 

Recently, a new algorithm called Gravitational Search 
Algorithm (GSA), which is based on the concepts of the laws 
of gravitation and motion, has been proposed by Rashedi et al. 
[4]. This algorithm is based on Newtonian gravity: “Every 
particle in the universe attracts every other particle with a 
force that is directly proportional to the product of their 
masses and inversely proportional to the square of the distance 
between them”. 

In this work, we briefly introduce GSA and propose an 
improved GSA (IGSA) based on a quasi-oppositional 
approach. Opposition-based learning [5] is a new search 
strategy, which has been applied to some population-based 
algorithms to improve their performance [6]-[8]. By adding 
the quasi-oppositional approach, IGSA increases the 
probability of escaping from local optimua.  

To show the effectiveness of the proposed IGSA, we apply 
the classical GSA and the proposed IGSA to the design of the 
pole shape of a magnetizer. The version used here is based on 
the optimization problem described in [9],[10]. 

The rest of the paper is organized as follows. Section II 
briefly introduces the standard GSA and the proposed 
improved IGSA. In Section III, the case study of the 
magnetizer design is briefly described. Section IV presents the 

results and discussions. Finally, the conclusion and future 
work are summarized in Section V. 

II. FUNDAMENTALS OF THE GSA AND IGSA APPROACHES 
In GSA, agents are considered as objects and their 

performance are measured by their masses, with all objects 
attracting each other by the gravity force, while this force 
causes a global movement of all objects towards the objects 
with heavier masses [9]. 

To describe the GSA, consider a system with N agents 
(masses) in which the position of the ith agent is represented 
by: 
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where n is the search space dimension and d
ix defines the 

position of the ith agent in the dth dimension. At any time t the 
force acting between two masses is defined as: 

  (2) 
where G(t) is parameter which is slowly reduced during 
iterations, M is the mass, r is the distance and ε is a small 
parameter. It is then assumed that the total force acting on a 
mass is a randomly weighted sum of the individual forces (2), 
thus: 
 fi t( ) = rj

j=1, j≠i

N
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This allows the update of velocities and positions according 
to: 

 vi t +1( ) = ri ⋅vi t( )+ ai t( )
xi t +1( ) = xi t( )+ vi t +1( )

 (4) 

After this step masses are updated according to: 

 
mi t( ) =

fi t( )−w t( )
b t( )−w t( )
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mi t( )

mj t( )
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where b and w indicate the best and worst objective function 
values and f is the objective function. The procedure is then 
repeated until some convergence criterion is satisfied.  

In order to improve the algorithm, we apply the principle of 
quasi-oppositional based learning (QOBL) [11] in order to 
utilize opposite numbers to describe the mass (agent) as it was 
found that the opposite of a random number is likely to be 
closer to the mass than the original random number.  
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III. MAGNETIZER DESIGN 
The aim of this design problem is to increase the magnetic 

flux through a magnetic pole to be designed. In this paper, the 
geometry of the pole to be designed is described by six design 
variables (R1,…,R6) [10]. The required two dimensional 
magnetic field analysis is carried out using Matlab’s PDE 
toolbox. The objective function (fobj) adopted in this 
minimization problem is given by 

mf
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+
=
1
1  
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where mf is the maximum flux density. 
 

IV. OPTIMIZATION RESULTS 
The following setup is adopted for the GSA and IGSA 

approaches: G0 is set to 100, α is set to 20, N is equal to 15, 
and the maximum of iterations is 50. With this setup, a 
stopping criterion of 750 objective function evaluations in 
each run is adopted. In IGSA, the adopted probq value was 
0.3. Tables I and II show the results over 30 runs, with bold 
font indicating the best results. It can be observed that the 
results of IGSA are better than those of GSA. Figs. 1 and 2 
presented the best results using GSA and IGSA. 

 
TABLE I 

SIMULATION RESULTS OF F IN 30 RUNS  
Optimization 

Method 
fobj 

 Minimum 
(Best) 

Mean Maximum 
(Worst) 

StandardD
eviation 

GSA 0.7005 0.7183 0.7960 3.404E-2 
IGSA 0.6584 0.6843 0.7958 4.888E-2 

     
 

 
TABLE II 

BEST SOLUTIONS FOR MAGNETIZER DESIGN IN 30 RUNS 
Design variable GSA IGSA 

R1 0.4636 0.4669 

R2 0.2723 0.2518 

R3 0.2632 0.3365 

R4 0.2951 0.3176 

R5 0.2764 0.2636 

R6 0.2712 0.2691 
Objective function, fobj 0.7005 0.7680 

Maximum flux density (T) 0.4274 0.3020 
 

 
Fig. 1. Geometry of the best magnetizer shape obtained by GSA. 

 

 
Fig. 2. Geometry of the best magnetizer shape obtained by IGSA. 

V. CONCLUSION 
Numerical tests with a magnetic pole design problem show 

that the proposed IGSA method offers good performance as 
well as robustness in the solution of the magnetizer design 
problem. The extended version of the paper will include a 
detailed description of the algorithm as well as further 
benchmark results and comparisons with competing 
metaheuristics. 
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