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Abstract—The identification of conductive objects of known
shape embedded in low- or non-conductive regions is a special
application of non-destructive testing, with possible important
applications in some surgical procedures. In particular, some
classes of fractures are routinely stabilized and aligned by the
use of intra-medullary nails. Identifying the position and the
orientation of the drill holes hidden by bone and tissue is
currently done by X-Ray with all the well known disadvantages
of this technology. The idea of substituting this methodology
with an eddy-current based one has been explored in previous
work but, in spite of interesting features, the developed technique
suffered from some hard to address shortcomings. In this paper
we propose a new technique which is computationally efficient
and inexpensive to implement.

Index Terms—Inverse problem, non-destructive testing,
stochastic optimization

I. Introduction

The basic identification problem addressed in this work is
shown in Fig. 1. A conductive implant of known shape, called
nail and usually made by titanium alloys, is to be inserted
inside a bone (not shown) and its position (x, y and z) and
orientation (angles ϑ and ϕ) has to be determined.

In previous work [1] a saddle-coil arrangement was used
to induce eddy currents in a copper ring attached to the
nail and the reaction field was measured by Giant Magneto
Resistance (GMR) sensors, [2], [3]. Such technique showed
some non-negligible shortcoming since the field produced by
the eddy currents was iso-frequential and small compared to
the one produced by the main coil. Furthermore, the whole
arrangement required rather expensive power amplifiers to
drive the saddle-coil and lock-in amplifiers to pick up and
discriminate the small signal produced by the eddy-currents.
In the new arrangement proposed here, the saddle-coil and
copper ring are substituted by a permanent magnet, embedded
in one of the drill holes, which produces a much larger field
which, furthermore, is not superimposed onto another one thus
avoiding the need for filtering.

In the new system, the configuration for measuring the
magnetic field produced by the permanent magnet consists
of an array of three circular sensors layers positioned along
the y-axis, each consisting of 8 GMR sensors positioned on a
circuit board. The distance between the permanent magnet and
the sensors is in the order of 3 cm. A further advantage of the
new system design is that the field, which so far was computed
with computationally expensive finite element procedures, can
now be evaluated analytically [4].

This is of high practical interest if the procedure has to be
implemented in hardware for real-time surgical procedures.

II. Inverse Problem Solution

The inverse problem associated with the medical application
at hand consists in finding five degrees of freedom, collected
in the array p, i.e. the previously mentioned position and
angle parameters of the object, by measuring the magnetic
flux densities in the field points given by the GMR sensors,
collected in the array B. Thus, the problem consists in min-
imizing the difference between the noisy measurement data
vector Bδ and the forward problem solution vector B(p) for a
certain parameter configuration p.

In principle, the problem can be approached by deterministic
as well as stochastic methods: while the former methods
are generally faster but perform local searches, the latter
techniques operate globally and tend to be more reliable,
especially for noisy objective functions. Since a fast, accurate
and robust algorithm is required for the specific application,
the advantages of both methods can be combined or the
disadvantages eliminated, respectively, by applying a hybrid
optimization method.

A suitable deterministic method to solve general non-
linear, ill-posed inverse problems is the well-known Iteratively
Regularized Gauss-Newton (IRGN) algorithm [5]. The IRGN
method was already applied to the previous version of the

Figure 1: Basic problem configuration.



problem, i.e. the one in which the reaction field was produced
by the eddy currents flowing in the copper ring, and it was
found out that the technique is fast and accurate but not reliable
enough (10-20% of the runs fail to converge to the correct
solution of the problem).

A further possibility to solve the inverse problem is to apply
a stochastic method, e.g. a (µ/ρ, λ) Evolution Strategy (ES) [6].
With this method a reliable and accurate solution is reachable
but the convergence speed is very low. This was a severe
limitation in the original system which required the solution
of the forward problem by means of finite element simula-
tions, whereas in the current system fields can be computed
analytically thus the relatively low speed of convergence is no
longer a very critical issue. However, especially in the view of
a real-time implementation of the system, overall speed still
remains one of the main goals.

In order to minimize the drawbacks of each method a
combined stochastic-deterministic approach is used. Since
starting values which are far away from the true values are the
main reason for the failure of IRGN, a pre-Evolution Strategy
(pre-ES) is initially performed to provide a good starting point
for the very fast and accurate IRGN.

In very few cases the angle parameters are not well
identified within the IRGN sequence (the angle sensitivities
are much smaller), thus, a post-ES is started to improve
these results. 100% of all tested samples (different parameter
configurations to be identified) were identified with this hybrid
method. In [1] the characteristic parameter behaviour of the
hybrid identification method as well as identification results
can be found.

III. Numerical Results

Since the static magnetic field of the permanent magnet is
measured directly, the signal as well as the sensitivity can
be increased significantly compared to the eddy current mea-
surement method applied in [1]. Table I shows the parameter
sensitivities for one single object position and orientation. It
can be observed that the sensitivities are approximately 4-5
decades higher using the enhanced method, while the orienta-
tion parameter sensitivities remain clearly worse compared to
the positioning sensitivities.
Preliminary results show that the object to GMR distance

can be increased up to 10 cm while maintaining the desired
accuracy and reliability, and this can be of high practical
interest for real applications in the surgical environment.
In the eddy current model the forward problem was solved
by finite element method (FEM). To reduce the computation
time of the identification process itself to a reasonable dimen-
sion, FEM simulations were pre-computed for an appropriate
number of sampling points in the parameter space first. Using
this dataset the forward problem for an arbitrary parameter set
was approximated by using cubic interpolation between the
sampling points. To hold the desired approximation accuracy,
18 225 samples have been pre-computed in approximately
4 months. Solving the forward problem analytically using the

Table I: Parameter sensitivities of the eddy current model
(Model 1) and the permanent magnet model (Model 2) eval-
uated for a set of 10 parameter configurations.

Min. sensitivity
x y z ϑ ϕ

in T/m in T/m in T/m in T/deg in T/deg
Model 1 3.9E-11 1.1E-09 5.2E-10 1.5E-15 2.5E-14
Model 2 2.4E-6 2.2E-5 3.6E-5 4.1E-10 2.1E-10

Max. sensitivity
x y z ϑ ϕ

in T/m in T/m in T/m in T/deg in T/deg
Model 1 3.9E-4 1.8E-4 2.2E-4 1.4E-7 9.4E-8
Model 2 10.0 26.5 33.5 7.2E-3 7.8E-3

Mean sensitivity
x y z ϑ ϕ

in T/m in T/m in T/m in T/deg in T/deg
Model 1 2.8E-6 2.6E-6 2.9E-6 1.0E-9 8.6E-10
Model 2 6.8E-2 9.3E-2 1.2E-1 3.7E-5 2.2E-5

proposed, enhanced method, only takes a few milliseconds
with no loss of accuracy.

IV. Conclusion
This paper addresses the problem of identifying the position

and orientation of hidden conductive 3D objects, which finds
important applications in some surgical procedures. The work
aims at improving previous work which highlighted some
critical issues in the application of optimization techniques
to this class of problems. The proposed approach, com-
bining stochastic and deterministic optimization algorithms,
simplifies and extends the practical implementation of the
system, significantly improves the computational performance
and allows a very satisfactory robustness of the procedure.
The extended paper will include a detailed explanation of the
optimization procedure, comparisons with other optimization
strategies as well as further results including different sensor
arrangements.
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