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Abstract—This papers presents a modeling of thin resistive
sheets. An interface condition is used to avoid a fine mesh.
The electromagnetic fields are computed with a time domain
Discontinuous Galerkin method in order to evaluate the shielding
effectiveness. A 3D cavity is treated to illustrate the efficiency of
the condition.

Index Terms—Electromagnetic compatibility, Approximation
methods, Conducting materials.

I. Introduction

Many problems in electromagnetic compatibility (EMC)
require adequate numerical approaches to evaluate shielding
effectiveness. The ability to model features that are small
relative to the cell size is often important in electromagnetic
simulations. This may lead to subsequent increase in memory
and execution time due to a refined mesh around small details
of the geometry. Also the quality of the mesh can be strongly
affected. The impact of thin sheets is even more consequent
for time domain computations.

In order to avoid the spatial discretization of thin sheets
different interface conditions have been proposed. In the fre-
quency domain, analytical solutions can be included in a three
dimensional model [1]-[2]. In the time domain, an inverse
Fourier or Laplace transform is combined to a convolution
product. Many papers have been devoted to implement this
approach in the FDTD method [3]. Nevertheless the stair cas-
ing error present in the FDTD method may affect significantly
the numerical results.

The Discontinuous Galerkin (DG) method is a powerful
approach for solving time dependent problems [4]. It is based
on the local solution of the equations in each cell and uses flux
terms to connect adjacent elements. It has the advantage of the
unstructured mesh and high spatial order scheme unlike the
conventional FDTD. Such a high spatial scheme can reduce
the dispersive error induced by the low level of the spatial
approximation in the FDTD.

In this paper a specific interface condition is built to replace
a thin resistive sheet in EMC 3D models. It allows to take
into account conductors with a thickness smaller than the skin

depth. This interface condition is implemented in a DG module
of GMSH [5].

II. Problem Formulation

Let E, D, H, B and J, be respectively, the electric field, the
electric induction, the magnetic field, the magnetic induction
and current density. The constitutive laws are:

B = µH D = εE (1)

where ε is the permittivity of the medium and µ its permeabil-
ity. The current density of the conductive medium is such as
J = σE, with σ the conductivity. The fields satisfy Maxwell’s
equations in the time domain which constitute a system (2) of
6 unknowns, E(t, x, y, z) and H(t, x, y, z):

ε∂tE − ∇ × H = −J

µ∂tH + ∇ × E = 0
(2)

The DG variational formulation of (2) in each element T is
given by:


∫

T ε∂tEφ −
∫

T H × ∇φ −
∫
∂T (n × H)numφ = −

∫
T σEφ∫

T µ∂tHψ +
∫

T E × ∇ψ +
∫
∂T (n × E)numψ = 0

(3)

where φ and ψ are test functions.
The interface terms between neighbouring elements are

evaluated using numerical fluxes (n×E)num and (n×H)num given
by: 

(n × H)num = n × {ZH}
{Z} − α(n × (n×[E])

{Z} )

(n × E)num = n × {YE}
{Y} + α(n × (n×[H])

{Y} )
(4)

where Z = 1
Y =

√
µ
ε
, [u] = u+−u−

2 and {u} = u++u−
2 . The ”+/-”

denotes the values in the adjacent element. For α = 0, centred
fluxes are obtained and the numerical scheme is dispersive
[6]. For α = 1, upwind fluxes are obtained and the numerical
scheme is dissipative [4].



III. The Interface Condition
For a resistive thin sheet of thickness d smaller than the

skin depth, a relation between the electromagnetic fields on
both sides of the sheet is proposed. This relation given by (5)
is built thanks to the analytical two-wire transmission line 1D
solution and the continuity of the electric field [7].

E(t, 0) = E(t, d)

E(t, 0) + E(t, d)
2

= 1
σd (H(t, d) − H(t, 0))

(5)

Let note (E−,H−) and (E+,H+) the fields on the sides of the
sheet and n the outward unit normal. The relation (5) can be
reformulated with tangential components of the fields in the
general case and becomes:

n × E+ = n × E−

n × H+ − n × H− =
Ys
2 (n × E+ + n × E−)

(6)

with Ys = σd, where σ is the conductivity of this sheet.
The resulting flux terms for the interface condition are

obtained by taking (4) with α = 0 and using (6):
(n × H)num = n × Z−H−

{Z}

(n × E)num = n × {YE}
{Y} + n × (n×[H])

Ys

(7)

IV. Numerical Results

Figure 1: 3D Cavity

A transient scattering problem is studied. Let con-
sider a 3D cavity (Fig. 1), whose dimensions are
a = 300 mm, b = 120 mm, d = 300 mm, l = 100 mm,
w = 5 mm, t = 1 mm. This cavity is illuminated by an inci-
dent Gaussian pulse. A Runge-Kutta scheme is implemented
for numerical experiments. The electric field is computed at
the center of the cavity. Different cases of conductivity of the
sheet are compared: σ = 50 S/m, σ = 10 S/m and Perfect
Electric Conductor (PEC).

For the Perfect Electric Conductor (Fig. 2), the electric field
is similar to that obtained with the Finite Integration Technique
(FIT) method [8]. For the case of finite conductivities (Fig. 3),
the field penetrates through the aperture and sides of cavity.
The electric field at the center of the cavity remains important
for low conductivities and decreases faster with time.
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Figure 2: Electric field at the center of the cavity (PEC sheets)
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Figure 3: Electric field at the center of the cavity (Conductive
sheets)

The wide band response of 3D composite enclosures will
be presented at the conference.
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