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Abstract—A modified Meshless Local Petrov-Galerkin for an
electromagnetic axisymmetric problem is presented in this paper.
The method uses the shape functions generated by the Radial
Point Interpolation Method with a modified T-scheme to select
the support nodes, and also a new and malleable strategy to
determine the test domains. The convergence of the method is
evaluated using a coaxial cavity problem and it is compared to the
Finite Element Method for two different meshes, a good quality
one and other composed partially by bad quality elements.

Index Terms—Convergence of Numerical Methods, Integral
Equations, Finite Element Method.

I. Introduction

Several meshless methods are reported in the literature,

among them are the Element-Free Galerkin (EFG) [1], the

Meshless Local Petrov-Galerkin (MLPG) [2], and the Point

Interpolation Methods (PIM) [3]. Meshless methods use a

procedure to build their shape functions such as the Moving

Least Squares (MLS) and the Point Interpolation Method [4].

In this work, the formulation is based on the MLPG

method, which has a local weak formulation, resulting in

sparse matrices and minimization of the numerical effort. The

Radial Point Interpolation Method with Polynomials (RPIMp)

is used to generate the shape functions. In RPIMp, radial basis

functions and polynomials are added to the base, providing

high accuracy and ensuring consistency of the shape functions

[4]. RPIMp shape functions have the Kronecker delta property

and thus essential boundary conditions are naturally enforced.

The MLPG does not require any mesh or grid, however a

special data structure (generally a k-d tree) is used to determine

the support and test domains [4]. In order to improve the

MLPG performance, in this paper we use a mesh to do this.

A modified T6-scheme is used to select the support nodes to

generate the shape function [4]. Using mesh information to

determine the test domain, the local weak form integration

procedure is simplified and more precision can be obtained,

specially in complex geometries. We obtain a MLPG method

that depends on a mesh. The advantage of using it is that this

mesh can be of bad quality, because it does not affect the

obtained results in the same way as it does with the Finite

Element Method (FEM). To show this, a coaxial cavity has

its modes computed by both methods, using two meshes: a

good quality one and another composed partially of bad quality

elements. The results show that the proposed MLPG method

is much less sensitive to the bad mesh quality than FEM.

II. TheModifiedMLPG

We will solve an electromagnetic problem with axial sym-

metry, with the magnetic field having only the Hφ component

and ∂Hφ/∂φ = 0 (which is a 2 dimension analysis, on the ρ−z

semi-plane). The global weak-form for the problem is [5]:
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where ǫr and µr are relative permittivity and permeability,

respectively. ψ(ρ, z) is the test function, Ω is the problem

domain, and k0 is the free-space wavenumber.

The MLPG uses a set of nodes inside Ω (interior nodes) and

at its boundary ∂Ω (boundary nodes). The MLPG solution of

(1) is achieved by approximating ρHφ by a RPIMp representa-

tion [4]. The RPIMp shape function is built using a modified

T6-scheme to select the nodes of the support domain: 6 nodes

are selected for an interior cell, as suggested by the T6-scheme

(3 vertices plus 3 remote vertices of the three neighboring

cells), and only 5 nodes are selected for a boundary cell (3

vertices plus 2 remote vertices of neighboring cells). This

proposed T-Scheme doesn’t use a search structure for adding

a node to the boundary cells, which is simpler, efficient, and

also provides good results.

For a given node i, its test function ψi has a compact support

where ψi , 0, which defines the node’s test domain ΩS i
, where

weak-form integrations are evaluated. We propose to use the

mesh to determine ΩS i
, which is composed by all the cells that

have a node i as one of its vertices.The adopted test function

has a unit value inside ΩS i
and on ∂ΩS i

.

The MLPG local weak form is then obtained from (1) by

replacing ψ by 1 and ρHφ by its RPIMp approximation. In

(1) the second integral vanishes, as ∇ψ = 0 inside the test

domain ΩS i
. The boundary integral of (1) is evaluated only

for the ∂ΩS i
inside ΩS . For the ∂ΩS i

on ∂Ω (assumed to be a

perfect electric conductor wall), the boundary integral is used

to impose the Neumann boundary condition ∂(ρHφ)/∂n = 0.



III. Numerical Results and Conclusions

Numerical results are presented for the resonant modes of an

axially symmetric coaxial cavity which has analytical solution

[6]. The analyzed cavity has an internal radius of 1m, an

external radius of 2m, a height equal to 1m, and vacuum in

its interior (ǫr = 1 and µr = 1).

MLPG convergence is determined and compared to FEM.

Two different meshes are used: the first one (mesh A) has only

high quality elements and the second one (mesh B) is partially

built with bad quality elements with one internal angle close

to 180◦. Fig. 1 presents the convergence for the second mode

k2 of the coaxial cavity. The MLPG convergence results are

better than the FEM results for both meshes. The MLPG

rates are 2.1179 and 1.441 and the FEM ones are 1.9327 and

1.2595 for meshes A and B, respectively. Fig. 1 also presents

the parameter δ j that defines the logarithmic level difference

between FEM and MLPG errors at each point j of the curves.

The average logarithmic level difference δav is computed using

all δ j with the same number of nodes. In Fig. 1, δav = 0.5066

and δav = 1.1682 for mesh A and B, respectively. These two

positive values show that MLPG error curves are below the

FEM curves for both meshes. It also can be observed that

δav is increased from mesh A to mesh B, which indicates the

lower sensitivity of MLPG to the mesh distortion.
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Figure 1: FEM and MLPG convergence using meshes A and

B for the second mode of the coaxial cavity. kNum
2

and kExact
2

are the numerical and exactly solutions of the second mode.

The convergence rates of the first five modes are shown in

Table I, which presents the results for the FEM using meshes

A and B (FEM-A and FEM-B), and for the MLPG using the

same meshes (MLPG-A and MLPG-B). For the regular mesh

A, MLPG has higher convergence rates than FEM for modes

k2 and k5, and FEM has better results for the other modes.

The convergence rates are quite similar, showing that FEM

and MLPG have similar performance for the regular mesh.

However, regarding the bad quality mesh B, MLPG has higher

convergence rates than FEM for four modes while FEM has

a slightly larger rate only for mode k4, showing that MLPG

achieves a better performance than FEM for this mesh.

Table I: MLPG and FEM convergence rates.

Modes k1 k2 k3 k4 k5

FEM-A 2.0928 1.9327 1.9809 2.0924 1.9347

MLPG-A 1.965 2.1179 1.9629 1.9804 2.0517

FEM-B 2.1059 1.2595 1.7622 2.0835 1.4020

MLPG-B 2.1558 1.4410 1.8452 2.0494 1.6334

The average logarithmic level difference for MLPG and

FEM error curves are shown in Table II for the first five modes

of the cavity. δav are presented for the two meshes A and B

(δav-A and δav-B). For mesh A, the MLPG has better results

for the modes k2 and k5, which are below the FEM error curves

by 0.5066 and 0.4959 on average. FEM has better results for

the modes k1, k3, and k4, which are below the MLPG curves

by 0.1885, 0.0134, and 0.2645 on the average. For mesh B,

MLPG does not provide a better result only for mode k4.

δav has little change for mode k4 and has significant changes

for the other modes (δav of k5 increases close to 3 times).

These average logarithmic level difference results also show

the better performance of the proposed MLPG for the worst

quality mesh (mesh B).

Table II: Average logarithmic level difference.

Modes k1 k2 k3 k4 k5

δav-A -0.1885 0.5066 -0.0134 -0.2645 0.4959

δav-B 0.3404 1.1682 0.2861 -0.2877 1.4833

These results suggest a better performance of the proposed

MLPG than FEM in problems with meshes with bad shaped

elements. This is a result that drives our work on the extension

of the method for 3 dimension problems where, depending on

the geometry, good quality meshes are very difficult to obtain.
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