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3Università di Udine, Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Via delle Scienze 206, 33100 Udine, Italy
paolo.bettini@unipd.it

Abstract—This paper presents a tool to estimate the halo
current forces generated by disruptions that occurr during fusion
reactors operations. The domain of the elektrokinetic problem is
so complicated that two complementary formulations are used to
monitor the discretization error. It turns out that thousands of
cohomology generators are needed by the electric vector potential
formulation, that would require an enormous amount of memory
and computing power to retrieve all of them even using state-of-
the-art algorithms. To solve this challenging problem, we present
a novel algorithm to generate the absolute second cohomology
group generators exploiting the idea of lazy cohomology genera-
tors stored as sparse vectors. The new algorithm is able to save
orders of magnitude computational time.

Index Terms—fusion reactor design, tokamaks, computer sim-
ulation

I. Introduction

The instabilities of plasma during fusion reactors operations
may cause the plasma to hit the first wall of the vessel in
such a way that enormous currents are injected in the passive
conductive structures of the machine. These currents, delivered
on a time scale of milliseconds in a region submerged in a huge
magnetic flux density field needed for plasma confinement,
give rise to tremendous forces that has to be taken into account
when designing the mechanical structure of the machine. A
fully self-consistent model that may be used as a predictive
tool for these forces is not yet available due to the complexity
of the physical magneto-hydrodynamic phenomena and the
quite complicated domain of study.

In [1], to give a first estimate on halo forces, two codes have
been benchmarked assuming a resistive distribution of halo
currents. The first one is the well-known CARIDDI code based
on a gauged electric vector potential formulation, whereas
the second one is the CAFE code based on complementary
formulations for stationary conduction [2]. The problem to be
solved consists in an electrokinetic Neumann boundary value
problem where the sources are exactly the currents injected by
the plasma to the first wall (FW) of the vessel. In particular, we
study a so-called vertical displacement event (VDE), in which
the plasma move upwards impinging the FW. Even though
this problem may be solved employing the classical electric
scalar potential formulation, we use complementarity to have
some estimate on the quality of the solution. This is important
since the geometry of the problem is so complicated that a

convergence study using only one formulation may be hard to
achieve using hexahedral meshes.

The practical problem encountered using electric vector
potential-based formulations is that they require a complicated
topological pre-processing due to the fact that the domain
under study is topologically non-trivial [3], [2]. For Neumann
problems, it is possible to show that a H2(K−∂K) cohomology
basis is needed [3], [2]. We note that any basis is suitable for
this application, so issues related to basis selection [4] are
not of interest in this context. We also note that this group is
torsion-free [3].

There are various ways to produce a cohomology group
basis. CARIDDI, for instance, computes directly the kernel of
a matrix whose entries are real numbers [1]: this approach is
practical, but time consuming (some hours on meshes formed
by some hundred of thousands hexahedra) and prone to errors
due to the finite precision of real numbers. This time can
be slightly reduced by using state-of-the-art reductions for
rigorous cohomology computations over integers as described
in [5]. Nevertheless, the time remains relatively high (more
than 1 hour) because cohomology computations for this ap-
plication are challenging (a few thousands of generators have
to be computed). With the plan to increase the mesh size to
tens of millions hexahedra, this is an obstruction that prevents
the exploitation of complementarity.

In this paper we first introduce the idea behind the novel
approach for cohomology computation, then we present some
preliminary results.

II. Computing H2(K − ∂K) generators

In this paper we present a novel solution for computing
H2(K − ∂K) cohomology generators by exploiting the con-
cept of lazy cohomology generators and by modifying the
DS algorithm [6], [7], that originally generates H1(K) lazy
generators, to compute H2(K − ∂K) generators instead. Lazy
generators are a set of generators that span the corresponding
cohomology group but they are not a basis, some of them
being linearly dependent or cohomologically trivial. The key
idea is that, with ungauged formulations, lazy generators may
be used as if they were a standard basis. In fact, the linear
system is already overdetermined, so adding a few dependent
but consistent equations does not change the property of



the system. Moreover, since the number of generators to
retrieve in fusion engineering applications is huge, in the DS
algorithm implemented CAFE code they are represented as
sparse vectors. Using this approach, the computation of a
few thousands of lazy cohomology generators requires a some
minutes even on huge meshes.

The modified DS algorithm to retrieve the H2(K −∂K) lazy
generators reads as follows:

1) Compute the first cohomology H1(∂K ,Z) generators
c1, . . . , c2g, where g denotes the genus of ∂K . This
can be performed in linear time worst-case complexity
O(card(∂K) g) with the graph-theoretic algorithm:

a) An edge spanning tree is found on ∂K by a
breadth first search (BFS) technique.

b) A dual edge spanning tree is found on the graph
obtained by edges that are dual to edges in ∂K
that are not contained in the edge spanning tree
by a BFS technique.

c) The “free” edges in ∂K that belong neither to
the tree nor to the dual tree are found. Each free
edge produces a H1(∂K) generator. Once a free
edge interpreted as a dual edge is added to the
dual tree, exactly one cycle is produced on the
dual complex. The edges dual to the dual edges
in the cycle are the support of the generator. The
coefficients of the 1-cocycle are easily found by
orienting the dual cycle.

2) Find second cohomology group lazy generators
t1, . . . , t2g corresponding to c1, . . . , c2g in O(card(∂K) g):

for each 1-cell E with nonzero coefficient cE in ci

for each 2-cell T ∈ K with E in the boundary
⟨ti,T ⟩+ = cE κ(T, E);

The value of the cochain t on a cell E is ⟨t, E⟩, whereas
κ(A, B) denotes the incidence between cells A and B.
Initially, set ⟨ti,T ⟩ = 0 for all 2-cells T ∈ K .

This algorithm is typically between one and two orders
of magnitude faster than standard algorithms for cohomology
computation. Nonetheless, when this algorithm is applied to
problems that require thousands generators, the dual cycles
retrieval (i.e. point c) of the algorithm) becomes a bottleneck.
To retrieve the cycle relative to a given free edge E, the two
surface elements F1, F2 on ∂K that have E in the boundary
are found. F1 and F2 may be interpreted as dual nodes on
the dual complex of ∂K . Then, a discrete distance field from
dual node F1 is found by a BFS technique [8]. The distance
field propagation stops when the F2 dual node is reached.
Finally, the cycle is retrieved starting from F2 and following
the predecessors until F1 is reached, see [8] for more details.

It is intuitive that independently retrieving thousands of dual
cycles becomes inefficient. That is why in this paper, as a
further improvement of the DS algorithm [6], [7], we propose
a technique to retrieve simultaneously all generators. The idea
is to find just one distance field per connected component
of ∂K starting from a random dual node on each connected
component of ∂K . Then, all the cycles can be retrieved by the
only distance field available. In fact, the dual path between

Figure 1: The module of the current density in a quarter of
the machine (the simulation has been performed on the whole
machine discretized with 1,132,020 hexahedra.) 3280 lazy
cohomology generators are computed in less than 30 seconds.

a pair of dual nodes F1, F2 may be found by considering
the predecessors of F1 and F2 until a common predecessor is
found. The detailed algorithm and its rigorous analysis will be
presented in the full paper.

Decreasing complexity from O(card(∂K) g) to
O(card(∂K) + P), where P is the sum of the cardinality of
all the cycles, the computational time is further reduced to
few seconds or few tens of seconds even on huge meshes.

III. Numerical results

Complementarity has been used to give an estimate of the
halo currents. In Fig. 1, the typical behavior of an asymmetric
VDE is shown. In the full paper more results will be presented.
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