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Abstract⎯  The finite element computation of eddy current 
problems gives numerical error. This error cannot be calculated, 
but can only be estimated. Among all error estimators already 
developed, it is proposed to compare two proven estimators 
called residual and hierarchical error estimators.  

I. INTRODUCTION 
To evaluate the quality of numerical computation of low 

frequency electromagnetic finite element (FE) problems, a lot 
of error estimators have been developed. Some of them are 
based on energy minimization. Others, called equilibrated es-
timator, are based on the verification of the constitutive rela-
tions. More recently the residual a posteriori error estimator 
(REE) [1-4] and the hierarchical error estimator (HEE) have 
been proposed [5]. In the case of the REE, all the terms weak-
ly verified are evaluated to obtain an estimation of the error 
[4]. On the other hand, with the HEE, the error estimation is 
given by using hierarchical higher order (HO) test functions 
(TFs) [6] in the FE formulation, either to evaluate some resi-
dues or to obtain HO solutions [5]. 

In this paper, we propose to apply the REE to FEs up to se-
cond order and to compare the obtained results with the HEE 
on the same mesh. 

II. ERROR ESTIMATORS 

A. Weak finite element magnetodynamic formulation 
The weak magnetic vector potential a-formulation of the 

magnetodynamic problem is obtained from the weak form of 
the Ampère equation, i.e. [5], 

 (h,curla ')!"( j,a ')!+< n#h,a ' >$= 0 , !a '" F1(#) , (1) 

where F1(Ω) is a curl-conform function space defined on Ω; 
( · , · )Ω and < · , · >Γ denote a volume integral in Ω and a sur-
face integral on Γ, respectively, of the product of their field 
arguments; n is the unit normal on Γ exterior to Ω. Magnetic 
field h and electric current density j are related to magnetic 
flux density b and electric field e (in Ωc ⊂ Ω, with 
Ω = Ωc ∪ ΩcC), respectively, through the material relations 
h = µ–1 b and j = js + σ e, with µ the magnetic permeability, σ 
the electric conductivity and js the source current density in 
stranded inductors in Ωs ⊂ ΩcC. With the magnetic vector po-
tential a defined via b = curl a and e = – ∂t a – grad v (∂t is j ω 
with ω the angular frequency in the frequency domain), weak 
formulation (1) gives the a-v formulation (or A-ϕ formulation 
with notations of [4,5]), i.e. 

   (µ!1curla,curla ')!+("#ta,a ')!c +("grad v,a ')!c  

 !( js ,a ')"s +< n#h,a ' >$= 0 , !a '" F1(#) , (2) 

with F1(Ω) gauged in ΩcC, and containing the basis functions 
for a as well as for the test function a' (at the discrete level, 
this space is defined by edge FEs; the gauge is based on the 
tree-co-tree technique); note that F1(Ω) can be non-gauged if a 
proper resolution scheme is used [4]. Once a solution is ob-
tained in a particular discrete function space with (2), it can be 
used a posteriori to estimate the associated error. 

B. Residual error estimator (REE) 
Generally, the discretization error committed by the FE 

method can be resumed by the error on the energy. In the case 
of the a-v formulation, the local error on a and v can be writ-
ten ea = a – ah and ev = v – vh, with a and ν the exact solutions 
of the problem and ah and vh the numerical ones. From these 
local errors, the global error norm can be written, involving 
error terms on magnetic energy and Joule losses, i.e. 
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Carrying out an ad-hoc Helmholtz decomposition of (1) and 
using suitable interpolation operators and Cauchy-Schwarz in-
equality, the efficiency and the reliability of REE can be ob-
tained [4]. For the a-v formulation, the REE ηω on FE ω ⊂ Ω 
quantifies all the terms weakly verified in (2) via 
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with 

  !";1 = h" #h js $ curl(µ
$1curla)$%( j"a+ grad v)

"
, (5a) 

  !";2 = h" div(#( j"a+ grad v)) " , (5b) 

  !";3 = h" js #$h js " ,  (5c) 
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. (5e) 

Operator πh represents the projection operator from H(div, Ω) 
in a discrete approximation space. Coefficients hω and hγ 
stand for the diameter of the smallest sphere containing the el-
ement ω and the diameter of the smallest circle containing the 
facet γ, respectively.  All these terms must be evaluated on 



 
 
each FE. Terms (5a-b) quantify the error of the equation to 
solve. Term (5c) corresponds to the discretization error of the 
source term. Finally, terms (5d-e) evaluate the jumps (discon-
tinuities) of the tangential component of h and the normal 
component of j through the element facets.  

C. Hierarchical error estimator (HEE) 
Once weak form (2) has been solved, it is evaluated with 

the corresponding solution with HO basis functions (BFs) 
ap' ∈ Fp1(Ω) as TFs. This gives a left hand side of (2) not 
equal to zero anymore but defining a residue Rp that can serve 
as an error estimator, called HEE [5], i.e. 

   Rp = (µ
!1curla,curlap ')"+(#$ta,ap ')"c +(#grad v,ap ')"c  

 !( js ,ap ')"s +< n#h,ap ' >$ , ap '! Fp
1(") , (6) 

Hierarchical HO-BFs can be associated with edges, facets 
and volumes of finite elements (FEs) [6]. For an edge or a fac-
et HO BF ap', respectively in 2-D and 3-D, shared by two FEs 
ωa and ωb, with interface γab, residue (6) has a contribution 
only from these two FEs. Restricting the form (6) to ωa and 
ωb separately, with ap' equal to zero on all the boundaries ex-
cept γab, integrating their first volume integral term by parts, 
and adding the resulting forms, one gets 

Rp = (curlh! j,ap ')"a+"b !< nab # (h |"a !h |"b ,ap ') >$ab ,  (7) 

with nab = n|∂ωa
 = – n|∂ωb

 the unit normal to γab exterior to ωa. 
Residue Rp, calculated via (6), is therefore a union of two er-
rors, pointed out by (7): an error on the equation to solve, via 
the volume integral term on ωa + ωb, and an error on the tan-
gential continuity of h, via the surface integral term on γab.  

For an HO-BF ap' associated with the volume of a FE ωa, 
thus with a zero trace on ∂ωa, the residue given by (6) is re-
duced to 

 Rp = (curlh! j,ap ')"a . (8) 

Using TFs a' = grad v' in (2) (which is implicitly the case 
with edge FEs for a' , that contains the gradient of nodal FEs), 
weak form (2) becomes the weak form of div j = 0, i.e. 

 (!"ta,grad v ')#c +(!grad v,grad v ')#c $< n % j,v ' >&s =0 , (9) 

with Γs some possible cross sections of conductors in Ωc. A 
residue Rv,p can be also defined for (9) when using HO TFs vp' 
for v', being also equal to 

 Rv,p = (div j,vp ')!a+!b "< nab # ( j |!a " j |!b ,vp ') >$ab .  (10) 

Residue Rv,p points out an error on div j = 0 on ωa + ωb and an 
error on the normal continuity of j on γab. 

A useful additional step can consist in using Rp as a source 
(right hand side) for a local FE problem (limited to the FE 
support of each TF), calculating the HO correction ap to be 
given to solution a for satisfying the HO weak formulation 
[5], i.e. 

(µ!1curlap ,curlap ')"+(#$tap ,ap ')"c +(#grad vp ,ap ')"c =!Rp.
(11) 

This allows an error estimation directly relative to the scale of 
the solution, whereas Rp is only relative to the others residues 

for the same mesh (as for the REE; the direct use of Rp can 
define another kind of REE). 

III. COMPARISON OF ERROR ESTIMATORS 
REE and HEE show some equivalences and differences. 

Equivalences can be found in all the volume and surface inte-
gral contributions involved in the estimators, where both 
weakly defined equations and interface conditions are evaluat-
ed in a way to express their related contributions to the errors. 
A difference appears regarding the weighting of the contribu-
tions, with coefficients defined as smallest diameters for the 
REE while such coefficients are implicitly defined via integra-
tions in each FE with the HEE. This gives differences, in par-
ticular in anisotropic meshes.  

Local contributions to the errors are related to each single 
FE with the REE and with groups of FEs (sharing edges or 
facets) or single FE (for volume TFs) with the HEE. In both 
estimators, the contributions are only relative to other similar 
contributions (which can be useful for mesh adaption), and are 
thus not expressed at the scale of the solution. However, the 
HEE can be extended to give a solution-relative error by cal-
culating HO corrections. 

 
Fig. 1. Example of distribution of local error estimation in an eddy current 
problem. The highest error is located in the skin depth with a too coarse mesh. 
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