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Abstract—Inrush currents are an important factor in the de-
sign of electrical machines, e.g., transformers. The uncertainties
in measurements of magnetic materials parameters propagate via
a fitted material law into the simulation results. In this work, the
technique of generalized polynomial chaos is used to compute the
solution statistics and to perform an analysis of variance, i.e., it
is revealed, which measurement points are the most influential.
As fitting strategies, we compare the result for the Brauer model
and an interproximation approach. This is essential step forward
compared to considering only the uncertainty quantification for
analytical material curve models.

Index Terms—Electromagnetics, permeability, nonlinearity,
measurement uncertainty, transformers, analysis of variance.

I. Introduction

To simulate electromagnetic fields of devices consisting
of ferromagnetic materials, one needs the nonlinear material
relations, e.g. the reluctivity, which we consider in this work.
These material relations are deduced from measurements.
The inevitable measurement errors yield uncertainties in the
resulting simulations, which have to be considered in order to
obtain robust machines.

In this context, the application of Monte-Carlo simulations
usually suffers from high computational cost. A more recent
developed technique, generalized polynomial chaos [1], [2], is
based on an expansion in the space of the random parameters.
Thereby, we treat the measurement data as random variables.
In the end, so-called Sobol indices [3], [4] allow us to quantifiy
the contribution to the total variance of some output (e.g.
device current) with respect to each uncertain measurement.

In this work, we analyze the uncertainties in an interproxi-
mation method based on cubic splines which is similarily used
in commercial software [5]. This is an important extension of
previous works that considered only simple analytical models,
e.g. by Brauer [6]. Both models are applied in a finite element
simulation of a transformer. We use uniformly distributed
random variables to describe measurement errors and compare
the resulting inrush currents also by means of Sobol indices
for both methods.

II. Uncertainty Quantification

In generalized Polynomial Chaos (gPC) [1], [2], uncertain
parameters enter a dynamical system as random vector Z =

(X1, X2, . . . , Xn) (on a respective propability space). Depending

on the distribution of the Z, one obtains a set of orthogonal
polynomials Ψk, and thus one can expand of the solution Y =

Y(Z) of the system: (up to a certain order M)

Y =

M∑
k=0

ykΨk(Z) (with (E[ΨiΨ j] = E[Ψ2
i ]δi j)). (1)

A. Stochastic Collocation

We assume the random vector Z = (X1, . . . , Xn) to be
composed of independed random variables. Then we can use
as basis functions Ψk the tensor product of basis functions
for each single random variable. We employ stochastic col-
location, which is a non-intrusive approach. On a grid in
probability space, the dynamical system is evaluated. Discrete
projection using Gauss-quadrature rules yields the expansion
coefficients yk of the solution Y .

B. Sobol Indices

To characterize and quantify the influence of each uncertain
parameter on the solution (or an output), the so called Sobol
indices (S Ui1...ik ) are a very helpful notation [3], [4]. Thereby,
the observed variance is split according to all the parameters
and to all possible collections of parameters (i1, . . . , ik) (with
il ∈ {1, . . . , n}). Thus they sum up one. The gPC is used to
compute approximations of the Sobol indices.

III. Transformer model

As benchmark we consider a field-circuit coupled system
consisting of a 2-D transformer with iron core (no load test).
It consists of 600 turns (primary coil), 2.5 Ω, modeled with
FEMM software [7], for more details see [8]. It is exited by
a sinusoidal voltage source with peak value of 157 V (chosen
s.t. the highest occuring flux density is about 2 T) and 50 Hz.
Turning on the voltage source at a zero-crossing, yields an
inrush current. The magnitude and the influnce of uncertain
parameters onto this output current are studied.

A. Curl-Curl Equation

To model electrical transducers, often the curl-curl equation
in terms of the magnetic vector potential ~A is used:

σ
d~A
dt

+ ∇ × (ν∇ × ~A) = ~Js. (2)



Here σ, ν and ~Js denote the conductivity, reluctivity and source
current density, respectively. The magnetic field strength ~H and
the magnetic flux density ~B = ∇ × ~A are related by ~H(~B) =

ν~B (H-B-curve). It is nonlinear for ferromagnetic materials.
Disregarding hysteresis and anisotropy, this gives a scalar law:
H = ν(B2)B with H := ‖ ~H‖2 and B := ‖~B‖2.

B. H-B-curve models

Let monotone measurements (Bi,Hi), i = 0, . . . ,N, with
B0 = H0 = 0 be given. For analysis often analytical models
are used, e.g., Brauer’s model [6] with parameters ki:

Hbr(B) := νbr(B2)B := (k1ek2B2
+ k3)B. (3)

It is fitted to the measurement data by minimizing∑N
i=1 [(Hbr(Bi; (k1, k2, k3)) − Hi)/Hi]2. Noisy measurements are

handled naturally by this least squares approach.
In commercial software, typically spline interpolation or

interproximation [5] are applied. The idea is to construct a
cubic spline function f which is monotone and fulfills∫ HN

H1

( f ′′(s))2ds→ min,
N∑

k=1

(( f (Hk) − Bk)/ωk)2 ≤ (cδ)2

with weights ωk and tolerance cδ. For simulations using
the curl-curl equation (2) the reluctivity is obtained via
νitprx(B2) := f −1(B)

B .

C. Uncertainty model for H-B-curve

Due to measurement errors, the reluctivites exhibit uncer-
tainty. This is now model for simulation, by perturbation of
certain measurements for the material M330-35A. For simplic-
ity and the purpose of demonstration, we perturb four values:

B̃ j =
(
1 + X j

)
B j with X j ∈ U([−θ, θ]) (4)

where θ = 0.003. For the interproximation algorithm we use:
c = 5, δ = 0.01 and ωk = 1 (for all k).

In the end, the curl-curl equation is solved for both uncertain
H-B-curves using gPC. From this Sobol indices are computed.

IV. Results

In this simplified setting small measurement errors were
modeled to ensure the monotonicity of the spline. In fact
we perturbed the 4 largest field values, (1.4 T, 1 kA/m),
(1.47 T, 1.6 kA/m), (1.53 T, 3 kA/m), (1.76 T, 12 kA/m), of
a set of 12 measurements. These perturbations in the upper
part of the H-B-curve yield small variations in the peak of
the inrush current in both models: Fig. 1a (Brauer model) and
Fig. 1b (interproximation spline). The peak value of the inrush
current differs substantially for both models. This could be
explained by the fact, that perturbation of the measurements
have a more global effect in the Brauer model (this has also
influence on the shape of the current).

The Sobol indices S U show a distinct behavior, Fig. 2a
(Brauer model) and Fig. 2b (interproximation spline). How-
ever, both plots reveal that the largest part of the variance of
the current peak is caused by the perturbed measurement with
the highest magnitude (corresponing to S U4). In the Brauer
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(a) Brauer model.
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(b) Interproximation spline.

Figure 1: Inrush current (first oscillation) plus/minus standard deviation (4
measurements perturbed at the end).
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(a) Brauer model.
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(b) Interproximation spline.

Figure 2: Sobol indices for current (4 measurements perturbed at the end).

model, it exhibits almost globally the largest influence on the
inrush current. Whereas in the interproximation case, we find
influence of all parameters, depending on the size of current.
This fits to the spline nature.

V. Conclusion
We proposed to use spline-based models in the quantifica-

tion of material uncertainty. The local support of measurement
points in a spline interpolation makes the nonlinear simulations
much more robust against measurement errors when compared
to analytical models. In the full paper we will discuss this for
more realistic models and larger deviations in the measure-
ments of the magnetic fields and fluxes.
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land, “Quantification of uncertainty in field quality of magnets originating
from material measurements”, appears in IEEE Trans. Magn.


