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Abstract—The computation of scattering by an infinite periodic
structure by an integral equation technique is accelerated by the
use of a the ACA method. This compression technique has the
advantage to be applied before the building of the matrix. As
a result, both assembly and solution phases benefit from the
acceleration of computation times. Numerical results assess the
efficacy on a problem with a simple periodic surface.

Index Terms—Integral Equations, H-Matrix, ACA

I. Introduction

Many applications in science and engineering are formu-
lated in terms of scattering by periodic structures. This is
especially true in electromagnetics, where periodicity plays
an important role in the design of structures. Due to the
development of nanotechnology, the importance of periodic
boundary value problem is further increased. The development
of broadband absorbers, the study of sea surface scattering,
the design of uniform antennas arrays, microwave lenses,
and artificial dielectric media or photonic cristals are a few
examples.

For the analysis of such periodic structures, it usual to
solve the problem with numerical method such as Finite
Difference Method, Finite Element Method, or Boundary
Element Method (BEM). Because of the computation cost
of such simulations, it may also be possible to simplify the
model by considering as infinite the periodic structures. This
is particularly true for BEM for which an appropriate Green
function enables to take into account the periodicity. However
the a priori complexity in O(N2) restricts BEM to relatively
coarse grids. It is then required to propose a method to improve
this complexity.

In this work, we consider scattering problems by a perfectly
conducting periodic surface Γ in the E-polarization (u = Ez)
as shown in Fig. 1.

The involved boundary-value problem to solve is then the
Helmholtz equation with a Dirichlet condition and a radiation
condition at infinity.

II. Integral equation

The scattering problem can be formulated as an integral
equation [1] with a single layer potential,∫

Γ

G(x, xs) j(xs)dγ(xs) = −Einc(x), ∀x on Γ, (1)

where Einc is the incident electric field, j the sought density
current and G the Green function. In free space, we usually
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Figure 1: A periodic surface.

consider
G(x, xs) =

1
4i

H(2)
0 (k|x − xs|) (2)

where i is the imaginary unit, k the wave number and H(2)
0 the

Hankel function of second kind. This definition is replaced in
the case of a periodic surface by

G(x, xs) =

+∞∑
n=−∞

1
2iγnL

e−iγn |y−ys | eiαn(x−xs) (3)

where L is the period of the surface, αn = 2πn/L + kθinc with
θinc the incident angle and γn =

√
k2 − α2

n.
Integral equation (1) is discretized using a Galerkin method

with a current density constant per element. It leads a priori
to a full matrix that should be compressed for memory and
computational time efficiency.

III. Matrix compression

A. Hierarchical Matrix

It has been proved that some matrices issued from the
discretization of integral equation, as these coming from
diffusion problems, can be efficiently represented by a data-
sparse format called hierarchical matrices often denoted H-
matrices [2].



This kind of matrix is constructed on a hierarchical matrix
block partition of the original matrix. This partition is related
to the geometric positions of the degrees of freedom (dofs)
of the discretization; it can be for instance a recursive binary
partitioning of this set of dofs. Some blocks of the partition
satisfy an admissibility condition and can to compressed.
They mainly represent far-field interactions between sets of
degrees of freedom. Other non-admissible block has to be fully
assembled and they represent near-field interactions.

In order to compress the admissible block, several strategies
can be considered as multipole expansion, panel clustering
[3]. Here we prefer to focus a purely algebraic approach, the
adaptive cross approximation because it is straightforward to
implement and multipole expansion for periodic kernel is not
yet very efficient [4].

B. Adaptative Cross Approximation
A compression technique (QR algorithm) has been conside-

red for the admissible matrix blocks in a previous work [5],
for the same application. Unfortunately this method is limited
by the fact that the compression is performed a posteriori and
consequently it is necessary to assemble the whole matrix.
In this work, we perform an Adaptive Cross Approximation
(ACA) [6] which can be applied a priori. It is an iterative
process that computes at each iteration one row and one
column (a cross) of the matrix block and an estimate of the
error to approximate the block (adaptivity). Thus only selected
entries of the matrix block have to be computed.

IV. Numerical Results
We consider here the case of scattering by a sinus surface

y = h sin
(

2πx
d

)
(4)

where h = 1cm and d = 2cm and we observe the effect of ACA
compression (for a given precision) when the number of degree
of freedom increase. The given result is the compression rate
(memory storage of the compressed matrix relatively to the
full matrix) at various frequencies (1Ghz to 1Thz).

This result shows that the method works with the expected
asymptotic behavior. As a result, the H-Matrices are known
to expect (whatever is the compression technique) an increase
of the memory storage in N log(N), which is obtained here.
In terms of computation time, the improvement is not fully
observed because of an important cost of the assembly of
diagonal uncompressed blocks, see Fig. 3.

Nevertheless a gain of factor 2 to 5 is obtained for 12800
unknowns (comparatively to compression rate 1% to 3%). At
higher size, direct assembly is possible to conjecture improved
gains. This work is yet under studie, a specific improvement
of the diagonal assembly being necessary to obtain all the
performances of the method.

Note : for this application, the solution of linear system by
an iterative solver is fast comparative to the assembly. It has
then not be studied in details yet. It will be useful to improve
it when the size of the system will increased and the diagonal
assembly will be fully improve.
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Figure 2: Compression rate vs the number of degrees of
freedom (dofs).
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Figure 3: Computation times.
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