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Abstract—The coupling of different dimensionalities in finite
element modeling is presented. 3D and 2D models as well as
2D and 1D models are coupled. The coupled models are used
to solve Laplace and Poisson equation with Dirichlet boundary
conditions. The results show that the coupled model give similar
results to full 3D or 2D models but with significantly lower
number of elements.

I. INTRODUCTION

The Finite Element Method (FEM) is a standard procedure
for solving various technical and physical problems. Even
though the computing capacity has increased significantly
during last years and decades, the FEM can still produce so
many degrees of freedom (DOF) for large models that the
solution of such models is unpractical. The needed computing
capacity for large time-dependent 3D models is even today
impractically large. The number of DOFs gets even larger
with coupled problems, e.g. mechanical-electro-magnetical,
[1],[2], and with non-linear problems. Also, for certain types
of problems, e.g. eddy-current problems, the need for true 3D
modeling is necessary.

The number of DOFs can be reduced simply by using lower
dimensional models [3] or using e.g. slice models, which are
series of 2D models, to model skewing in electrical machines
[4].

The coupling of different dimensions has recently gained
some interest, e.g. [5], [6]. In [5] the coupling is done step-
wise: first a 2D solution is obtained for a part of the domain
and then this solution is used as a boundary condition for
3D domain. In [6] the problem is divided into sequence
of subproblems, some of lower dimensions, and then the
complete solution is expressed as the sum of subproblem
solutions.

This paper presents a preliminary method for coupling
different dimensions directly into one FE-model. Here only
simple problems are solved but the method is planned to be
used in more complex problems as well. The aim of this paper
is to show that it is possible to couple different dimensions
into one FE-model.

II. THEORY

The Laplace and Poisson equations have many physical
interpretations. Here two different cases are presented.

The Laplace equation,

∇2u = 0, (1)

defines the electric potential, u, in a capacitor with boundary
conditions defining the potentials of the capacitor plates.

The Poisson equation,

−k∇2u = q, (2)

is the stationary heat equation for a volume that contains heat
source, where u is the temperature, q is the heat source
density and k is the thermal conductivity. If k = 1 and
q = 1, the Poisson equation takes the form:

−∇2u = 1. (3)

In FEM the equations may be transformed into weak form
that can be approximated by set of linear equations. The
resulting equation for Poisson equation is a matrix equation,
Su = F. If the boundary condition is Dirichlet, the equations
transforms into inner and boundary parts in matrix equation:(
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III. MODEL

0 1 2 −1
0

1
−1

0

1

z

mesh

x
y

(a) 2D-1D

0 1 2 −1
0

1
−1

0

1

y
x

mesh

z

(b) 3D-2D

Fig. 1: FE mesh of 2D-1D model with 16 2D and 2 1D elements (a)
and 3D-2D model with 192 3D and 16 2D elements (b).

The model is either 2D-1D model or 3D-2D model (see
Fig. 1). The nodes in the domains are classified as inner
nodes, n

(3D)
h and n

(2D)
h for 3D and 2D domains, respectively.

Similarly there are boundary nodes, n
(3D)
b and n

(2D)
b for 3D

and 2D domains, respectively. The common nodes, n
(3D)
c

and n
(2D)
c are the nodes that are common for both domains.

In the example in Fig. 1(b) the criteria would be nx = 1,
−1 < ny < 1 and −1 < nz < 1. The definitions are similar
for 2D-1D case.



With these definitions, the matrix equation (4) for 3D part
is S
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(5)
and similarly for 2D part.

Coupling the nodes in the common boundary states that the
nodes of lower dimension part are considered as nodes of the
higher dimension part, n

(2D)
c ⊂ n

(3D)
c and n

(1D)
c ⊂ n

(2D)
c .

Thus in the common boundary, it is sufficient to refer only to
solution in the higher dimension case, i.e. u

(2D)
c → u

(3D)
c

and u
(1D)
c → u

(2D)
c .

The coupling of the two domains is adjusted by a coupling
parameter, c that is used for the coupling nodes in the
common domain. The parameter is not necessary a single
valued parameter but it depends on the type of the coupling.
For ”simple” coupling only the primary nodes are coupled,
i.e. nodes that have exactly the same coordinates. For more
”complex” coupling secondary nodes are coupled as well
and then the value depends on the spatial location of the
corresponding nodes. For simplicity in notation, the coupling
part of the stiffness matrix is multiplied by single coupling
parameter, c: S

(2D)
c → c · S(2D)

c or S
(1D)
c → c · S(1D)

c .
With these definitions the matrix for the coupled domains

for 3D-2D case is (and similarly for 2D-1D case)
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IV. RESULTS

The Laplace equation is solved in simple case. Boundary
conditions: u(x) = 1 on boundary x = 0 and u(x) = 2 on
boundary x = 1. The mesh for the problem is shown in Fig.
1(a) and the result in Fig. 2.

The Poisson equation (3) is solved for simple case with
zero Dirichlet boundary conditions. The source term is 1. The
smaller case is the example mesh shown in Fig. 1(b) and the
result is plotted in the Fig. 3(a). In Fig. 3(b) the number of
elements is larger for the same problem.

V. CONCLUSION

The coupling of different dimensions in FEA gives similar
result as a full 3D or 2D model in simple cases like Poisson
equation with Dirichlet boundary conditions. In coupled anal-
ysis the number of DOFs is significantly lower than in full 3D
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Fig. 2: Solution of Laplace equation of 2D-1D model with 16 2D
and 2 1D elements (a) and model with 324 2D and 9 1D elements
(b). The red line is the 1D, the blue line is the 2D, and the black line
is the 2D-1D solution.
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Fig. 3: Solution of Poisson equation of 3D-2D model with 192 3D
and 16 2D elements (a) and model with 1152 3D and 64 2D elements
(b).

or 2D cases. In Table I the number of elements are compared
in coupled and non-coupled analyses.

In the full paper example cases with different boundary
conditions as well as a discussion on the choice of the coupling
parameter will be presented.

TABLE I: NUMBER OF ELEMENTS IN COUPLED AND FULL ANAL-
YSIS IN EXAMPLE CASES. CASES 1,2,3 AND 4 REFER TO FIGS. 2(a),
2(b), 3(a) AND 3(b), RESPECTIVELY.

case coupled full (3D or 2D)
case 1 18 32
case 2 333 648
case 3 208 384
case 4 1216 2304
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