
Abstract—This paper describes method to calculate magnetic 
forces based on finite element analyses. Local forces obtained by 
conventional methods frequently appear in the interior of linear, 
isotropic and homogeneous regions, e.g., an air region. The 
present method gives local forces that exactly vanish in such 
regions where no force should appear.  

Index Terms—Electromagnetic Forces, Finite Element 
Methods, Nodal Force Method, Edge-Element. 

I. INTRODUCTION 
Various methods have been used to calculate forces acting 

on magnetized bodies from finite element solutions [1]−[7]. 
Different from the equivalent charge or current approach, the 
methods based on the virtual work principle [1]−[3] or a local 
application of Maxwell stress tensor [4], [5] give local force 
distributions in the form of nodal forces, although there have 
been some arguments as to the meaning of these local forces.  

Because finite element solutions do not exactly satisfy 
both Faraday’s and Ampere’s laws, the local forces calculated 
by those methods—except for those using two dual 
formulations [3]—can be nonzero at the nodes in the interior 
of a linear, isotropic and homogeneous region, for instance, an 
air region. In this study, we discuss a method to calculate 
forces that guarantees that the local forces vanish exactly in 
those regions, where theoretically the force should be zero. 

II. NODAL FORCE CALCULATION FROM FINITE ELEMENT 
ANALYSIS  

The nodal force fi associated with a node i is given by 

 dVwii ∫= ff , (1) 

where f is the force density and wi is the weight function 
associated with the node. If the domain considered is 
composed of element-wise linear, isotropic and homogeneous 
media, the force density is concentrated on the surface of each 
element (Fig. 1).  

fn

ft

B2, H2B1, H1

μ1 μ2

 
Fig. 1. Surface Force Density on a Boundary between Different Materials 

 
A direct application of the Maxwell stress tensor to finite 

element solutions [4], [5] leads to the following normal and 
tangential components of the surface force density: 

 ( ) ( )ttnnn 2
1

2
1 HBHBf Δ−Δ= , (2) 

 ( )tnt HBf Δ= . (3) 

Here, B and H are the magnetic flux density and magnetic 
field intensity respectively, and subscripts n and t represent 
the respective normal and tangential components, and 
Δ(Bn Hn) = B2n H2n – B1n H1n, Δ(Bt Ht) = B2t H2t – B1t H1t, and 
Δ(Bn Ht) = B2n H2t – B1n H1t. It should be noted that ft does not 
necessary vanish in a region with no source current, because 
in general the finite element solution does not satisfy both 
continuities of the normal component of B and tangential 
component of H. For the same reason, fn and ft can be nonzero 
even in the interior of an air region.  

In the magnetic vector potential formulation, the essential 
problem is that the finite element solution directly gives a 
good estimate for Δ(Bn Hn) in (2) but not for Δ(Bt Ht) or 
Δ(Bn Ht). The following section presents a new approach to 
avoid the emergence of the undesirable forces, by evaluating 
Δ(Bt Ht) and Δ(Bn Ht) via the magnetizing currents.  

III. EVALUATION VIA THE MAGNETIZING CURRENTS  
For simplicity, we consider the magnetostatic problem: 

 ( ) 0
1 JA =×∇×∇ −μ , (4) 

where A, J0, and μ denote the magnetic vector potential, the 
source current density, and the magnetic permeability, 
respectively. Let 

 bx =K  (5) 
be the matrix equation arising from the finite element 
formulation. Here, with the shape functions wi, 

 dVK jiij ∫ ×∇⋅×∇= − ww1μ , (6) 

 dVb ii ∫ ⋅= 0Jw . (7) 

If we simply calculate the magnetizing current density Jm 
from the rotation of B obtained by the finite element solution, 
Jm can be nonzero on all the faces of the finite element mesh. 
For the purpose of this work, we consider instead an 
equivalent equation with the vacuum permeability μ0:  

 ( ) m0
1

0 JJA +=×∇×∇ −μ , (8) 

and the corresponding matrix equation:  

 m0 bbx +=K , (9) 
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 dVK jiij ∫ ×∇⋅×∇= − ww1
0

0 μ , (10) 

 dVb i
m
i ∫ ⋅= mJw . (11) 

Here bm is the vector associated with Jm, and from (5) and (9) 
it should be given by 

 ( )xb KK −= 0m . (12) 

Note that, if 0=kb  and all elements surrounding edge k 
consist of a same medium, 0m =kb  is guaranteed. In a region 
with no source current, the magnetizing currents considered 
therefore appear only on the boundary between different 
media. The force density calculated from ( )m00 JJH +=×∇ μμ  
has only a normal component on the faces of the elements, 
and it vanishes except interfaces between different media. 

IV. NUMERICAL TEST 
Fig. 2 shows a 2D test model, which is discretized by a 

triangular mesh. Nodal forces acting on the magnetic material 
were calculated by the conventional and proposed nodal force 
(NF) methods. Although it is appropriate to calculate Jm so as 
to satisfy (11) exactly, we evenly distributed each m

ib  to the 
neighbor surfaces, regarding m

ib  as the line current flowing 
along the edge (node in 2D) i.  
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Fig. 2. Test Model and 20×20 Mesh  

 
(a). Conventional NF Method 

 
(b) Proposed NF Method 

Fig. 3. Nodal Forces (100×100 Mesh)  
The two methods give almost the same results (Fig. 3), 

except for around the corners of the magnetized material (Fig. 

4). With the proposed method, forces acting in the air region 
and artificial tangential components on the surfaces clearly do 
not appear. Figure 5 shows the total forces acting on the body 
for different mesh sizes. Using a sufficiently fine 
discretization, the forces computed by the conventional and 
proposed methods converge to the same value. 

More details of the present method and related results will 
be reported in the full paper. 
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(a). Conventional NF method 
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(b) Proposed NF Method 

Fig. 4. Nodal Forces (Enlarged Views)   
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Fig. 5. Total Forces  
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