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Abstract—In this paper we address a fast approach for an
accurate eigenfrequency determination. The major challenges
posed by our work are: first, the ability of the approach to tackle
the large-scale eigenvalue problem and second, the capability
to extract many, i.e. order of thousands of eigenfrequencies for
the considered problem. At this point, we demonstrate that the
proposed approach is able to extract many eigenfrequencies of
a closed resonator in a relatively short time. In addition to the
need to ensure a high precision of the calculated eigenfrequencies,
we compare them side by side with the reference data avail-
able from analytical expressions and CEM3D eigenmode solver.
Furthermore, the simulations have shown high accuracy of this
technique and good agreement with the reference data. Finally,
all of the results indicate that the suggested technique can be
used for precise determination of many eigenfrequencies.

Index Terms—Finite element methods, eigenvalues and eigen-
vectors.

I. Introduction
Within this work, we investigate quantum billiards with

its statistical eigenvalue properties, which reveal the peri-
odic orbits in the quantum spectra and give the quantum
chaotic scattering. Specifically, we simulate superconducting
microwave resonators with chaotic characteristics (consisted
of two quarter cylinders with radii r1 = 200.0 mm and
r2 = 141.4 mm) and we compute the eigenfrequencies that
are needed for the level spacing analysis [1]. Accordingly, the
eigenfrequency analysis requires many (in order of thousands)
eigenfrequencies to be calculated and the accurate determina-
tion of the eigenfrequencies has a crucial significance.

As a result, the main aim of our study coincides with
solving the electromagnetic problem for a superconducting
cavity, which enclosures excited electromagnetic fields. For
this purpose, the finite element method based on curvilinear
tetrahedrons is utilized [2]. Hereby, we consider the numerical
solution of the generalized large-scale eigenvalue problem. It
is the task of finding the real scalars λk and the corresponding
real-valued vectors ~xk , 0 such that

A~xk = λkB~xk, (1)

where A ∈ Rn×n and B ∈ Rn×n are symmetric matrices, B is
positive definite, k = 1, 2, ..., n, and n is several thousands.
Despite the fact that many algorithms for eigenvalue determi-
nation (Jacobi-Davidson, Arnoldi, Krylov-Schur, etc) exist, not

as many are specifically adapted for computing a large number
of eigen pairs, located in a specified range, for matrices with
dimension in excess of several millions.

The Lanczos method with its variations is very attractive
for our project necessities. The major practical advantage of
this method is the tridiagonal reduction of the eigenvalue
problem that yields minimal storage requirements. Also, the
required arithmetic operations are small, allowing work with
very large tridiagonal, as well as, real symmetric matrices.
Consequently, our investigations comprise efficient, robust, and
accurate computations of many wanted eigenfrequencies by
employing the Lanczos method.

II. B-Lanczos Algorithm

The main idea of the B-Lanczos procedure [3] is to replace
the eigenvalue problem for the given matrix pair (A, B) by
an eigenvalue problem of a simpler Lanczos matrix. It is
an orthogonal projection technique onto a Krylov subspace
Km(B−1A, ~v1) and can be viewed as a simplification of the
Arnoldi’s method for the particular case when the matrices
are Hermitian.

1) B-Lanczos with Shift-and-invert: Along the line of our
requirements, the eigenvalue solver must deal with a very wide
requested frequency range of interest. To overcome this issue,
it is naturally desirable to access the matrix only in parts.
Applying the spectral transformation to the original problem
A~x = λB~x, we get

(A − σB)−1 B~x = θ~x, (2)

where the matrix (A − σB)−1 is never explicitly formed. This
transformation enables one to find closely spaced eigenvalues
in the neighborhood of σ in a well-separated form.

2) Filtered B-Lanczos: This method is based on spectral
transformation using polynomials in order to extract eigenval-
ues in a given interval and their associated eigenvectors.

III. Simulation Results

A. Implementation Details

The B-Lanczos and B-Lanczos with shift-and-invert (SI)
solvers are implemented in C / C++ and built on the com-
monly used libraries: Intel Math Kernel Library (MKL) 10.2



0.005 0.01  0.02  0.05  0.1   0.2   
−8

−7

−6

−5

−4

−3

Tetrahedral meshcells (million)

lo
g
1
0

∣ ∣ ∣

f̂
−
f

f

∣ ∣ ∣

 

 

TM
101

 mode

TM
102

 mode

Mode 2.37 GHz

Billiard cavity

Spherical cavity

O(log10(cells)
−4/3)

Figure 1: Relative deviation of the numerically obtained val-
ues f̂ to the reference results f as a function of the degrees
of freedom for a spherical and billiard resonator. The first
two worst computed degenerated mode eigenfrequencies are
considered for the spherical cavity, whereas for the billiard
cavity the 2.37 GHz mode eigenfrequency is determined.

with BLAS and LAPACK, SuperLU, and PETSc 1. The
matrices A and B are generated from an external program
CEM3D [2]. Additionally, the implementation exploits a par-
tial reorthogonalization [4], which is favored over the full
reorthogonalization [5]. In case that extreme eigenvalues are
sought, at each B-Lanczos iteration step, an iterative conjugate
gradient (CG) method (implemented in PETSc) along with Ja-
cobi preconditioner is used for the solution of the resulting lin-
ear system of equations. However, for the interior eigenvalue
determination an LU factorization, followed by a forward-
backward substitution, is performed using the SuperLU direct
solver.

B. Accuracy

The accuracy of the approach for eigenfrequency deter-
mination is tested for both analytically and non-analytically
resolvable electromagnetic problems (see Fig. 1). Namely,
due to verification purposes, a spherical cavity with radius
R = 1 m is analyzed, whose exact solution can be analytically
evaluated. It has perfectly conducting walls and contains a
perfect vacuum. Besides the analytically resolvable resonator,
the relative error is also measured for the chaotic billiard
resonator. In order to verify the results extremely accurate
reference data from CEM3D eigenmode solver are used. As
the number of discretization mesh cells increases, a relative
deviation in the order of 10−6 is present, next to the clearly
observable 4th order convergence.

C. Comparison with other Eigenvalue Solvers

We choose the recent versions of Matlab, SLEPc, and
CEM3D to compare the computational speed as well as
the memory consumption issues of the B-Lanczos solvers
(see Fig. 2 and Fig. 3). Each simulation run computes the
largest 100 eigenvalues of the billiard cavity. The eigenvalues
in MATLAB are obtained employing the Arnoldi’s method

1The used software libraries will be referenced in the full paper.
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Figure 2: Time consumption for a billiard cavity. Different
number of curvilinear tetrahedrons is used within the solvers.
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Figure 3: Memory consumption for a billiard cavity. Different
number of curvilinear tetrahedrons is used within the solvers.

implementation, while in SLEPc the Krylov-Schur method
was used in combination with Jacobi preconditioner of the
CG and GMRES method. The CEM3D solver implements the
Jacobi-Davidson method. As observed in Fig. 2 and Fig. 3,
the iterative solvers need long time, but less memory, as to be
expected. Here, the B-Lanczos solver next to SLEPc with CG
can be considered as one group. On another side, B-Lanczos
SI and Matlab are clearly separated from the other solvers in
time consuming sense. However, it should be noted that these
solvers require more memory than the CEM3D, B-Lanczos,
and SLEPc with CG solvers. In the full paper more details on
the accurate and memory-efficient eigenvalue determination
will be given.
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