
Abstract—Since uncertainties in design variables are inevitable 
an optimal solution must consider the robustness of the design. A 
methodology based on the use of first-order and second-order 
gradient indices is proposed introducing the notion of gradient 
sensitivity.  A kriging method assisted by algorithms exploring 
the concept of rewards is utilized to facilitate function predictions 
for the robust optimization process. The performance of the 
proposed algorithms is assessed through a series of numerical 
experiments and the TEAM Workshop Problem 22. 
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I. INTRODUCTION 
The concept of the Gradient Index (GI) was introduced and 

explored in [1]-[3]. The method transforms a problem into a 
multi-objective optimization by simultaneously minimizing 
the function itself and its gradient index, thus creating pareto 
fronts. This looks a very promising approach but has a certain 
weakness that it is difficult to select the preferred solution 
depending on the different size of the uncertainty. Moreover, 
to fully benefit from the method the sensitivity computations 
must be incorporated into the finite element code, something 
which is not possible when commercial software is used. 

In this paper we pursue similar ideas but introduce some 
important changes. First, we propose to use the concept of 
gradient index sensitivity, explained below. Secondly we 
investigate how the second order gradient index could assist in 
the process. Finally, instead of calculating the objective 
function using the computationally expensive finite element 
program, we use a kriging prediction. In other words, the 
objective function uses the kriging method [4] assisted by 
algorithms that balance exploration and exploitation ([5], [6]) 
using the concept of rewards [7]. This optimization strategy 
has been shown previously to be very efficient and has the 
advantage that it can link with any finite element software. 

II. ROBUST OPTIMISATION 
In conventional optimization the minimum (maximum) of 

an objective function is sought while the searching space is 
limited through a set of constrains. Once the global optimum 
has been found the problem is considered to have been solved. 
When practical devices are designed, however, we need to 
recognise that almost all parameters (design variables) are 
subject to uncertainties (manufacturing tolerances, variation of 
material properties, etc) and thus not just the value but also the 
shape of the optimum needs to be considered in the 
neighbourhood of the selected design; this is demonstrated by 
the examples of Figs. 1 and 2. A theoretical optimum may 
therefore be abandoned in favour of a ‘worse’ but more robust 
design; however, the decision will depend on the size of the 
uncertainties involved. For this reason having a pareto front 
instead of a single solution may be preferable. 

A. Multi-Objective Robust Optimization using Gradient Index 
Consider a one-variable test function [1]-[3] (see Fig. 1) 
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Fig. 1. Example of a robust design for a one-variable problem 
 (a) Objective function, the gradient index and sensitivity, 
(b) First and second order gradients, (c) Pareto solution. 
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The uncertainties may be either specified directly (e.g. as 
machining tolerances, say Δ) or defined mathematically as 
               𝑈(𝑥) = {𝜉 ∈ 𝑅𝑛|𝑥 − 𝑘𝜎 ≤ 𝜉 ≤ 𝑥 + 𝑘𝜎}              (2) 

where σ is standard deviation of uncertain variables and k is 
determined by a confidence level [2]. 

One way of incorporating robustness into the mainstream 
optimisation process is by adding the gradient index [1] as a 
second objective and formulating the problem as 

Minimize       𝑓(𝑥)           𝑥 ∈ 𝑅𝑛 (𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈)    
Minimize       𝐺𝐼(𝑥) = max1≤𝑖≤𝑛|𝜕𝑓(𝑥)/𝜕𝑥𝑖|         (3)     
Subject to      g𝑖(𝑥) ≤ 0, 𝑖 = 1, … ,𝑚                    

As shown in Fig. 1(a) point A is the theoretical global 
optimum. However, any small change in the variable x results 
in a large variation of the objective function; thus A is not a 
robust design and points B or C might be preferred. The final 
decision, however, is not straightforward and is influenced by 
the size of the uncertainty. We define a sensitivity of the 
gradient as the difference between the largest and the smallest 
value of the GI within the uncertainty range; as shown in Fig. 
1(a) the shape of this sensitivity carries useful information. 
Finally, a second order gradient may also be useful (Fig. 1(b)). 

The second example of Fig. 2 considers a ‘sharp’ global 
minimum, ‘shallow’ local minimum and a ‘plateau’.  
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Fig. 2. Two minima and a plateau 
(a) Objective function and the gradient indices, (b) Pareto solution. 

B. TEAM 22 Problem 
The final case refers to TEAM Benchmark Problem 22, the 

optimization of a superconducting magnetic energy storage 
system (SMES) [8]. Table I compares one typical result from 
literature with our AWEI algorithm (kriging with Adaptive 
Weighted Expected Improvement) [5], [6], while Fig. 3 
demonstrates the convergence process of AWEI. 

TABLE I 
PERFORMANCE COMPARISON OF ALGORITHMS 

Algorithm R2(m) h2/2(m) Best OF Iterations 
RBF 3.06 0.236 0.088 240 

AWEI (Kriging) 3.08 0.239 0.089 38 
Radial basis functions (RBF) [9]; AWEI (Kriging) [6]. 
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Fig. 3. TEAM Workshop Problem 22 (a) Prediction by kriging with AWEI 

(2.6 ≤ R2 ≤ 3.4, 0.408 ≤ H2 ≤ 2.2, D2=0.394, other parameters fixed),  
(b) Sensitivity with respect to R2 and H2, (c) Pareto solution. 

Finally, it is also possible to define a ‘function uncertainty’ 
as the second objective or use the notion of ‘curvature’. Lack 
of space does not allow elaborating on those issues so further 
discussion will be deferred until the full version of the paper. 
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