
Abstract — This paper introduces a new robust optimization 

approach for product design. It allows to take into account the 

variations on both the objective function and the constraints 

issued from the specifications. It offers the designer a support to 

choose a compromise solution that fits his requirements in terms 

of robustness and performance. The design models covered by 

the proposed approach may be black box (finite element for 

example) or white box (analytical equations for example). 

Index Terms — Uncertainty, Robustness, Design Optimization 

I. INTRODUCTION 

Despite the efforts provided to master the production 

processes, industrial products still face uncertainties related to 

the geometric parameters and materials properties. Ignoring 

these uncertainties during the design phase can lead to 

defective products and additional costs. 

 

 
Fig. 1. Robustness in the objective function (a) and constraints (b) 

Robust optimization aims to find the best product design 

taking these uncertainties into account. Usual industrial 

practices consist in a classical optimization followed by a 

sensitivity analysis. The global optimum     (Fig. 1.a) is not 

necessarily robust (too large performance variations   induced 

by small variations of  ). Usually, some design parameters are 

slightly moved in order to improve the solution sensitivity. 

Naturally, this allows to explore solutions only near the global 

optimum which leads, in many cases, to avoid the robust 

optimal solution   . The robust solution corresponding to the 

local optimum    leads to tight performance variations   .   

The constraint robustness, rarely addressed in the robust 

design field, is as important as the robustness on the objective 

function. Even if    is robust regarding the objective function, 

it is not robust relating to the constraints   (see Fig. 1.b). This 

leads    to violate the constraint (     ). The solution    

represents a good alternative as it is robust regarding both the 

objective function   and the constraint  .  

The main contribution of this paper is a new robust 

optimization approach to avoid these drawbacks. The 

uncertainties propagation is integrated within the optimization 

loop to directly target the robust optimum satisfying robust 

constraints. This allows a better exploration of the solutions 

space. Its automation makes the solution less influenced by the 

designer and leads to a fast calculation of the robust optimal 

design. The models covered by the proposed approach may be 

black box or white box. 

II. ROBUST OPTIMIZATION APPROACH 

A. The flowchart description 

The Robust Optimization approach is depicted in Fig. 2. If 

the design model is computationally costly (3D FEM for 

example), it can be replaced by a meta-model less time 

consuming. The Kriging [1] is a response surface method 

available among others.  

 
Fig.  2 The Flowchart algorithm 

For a fast computation, the variation of the parameters   

are characterized by the two first statistical Moments; the 

Means    and Standard Deviation   . The statistical Moments 

of the output parameters   are computed from the input ones 

using the Moment model                 . It is obtained 

by automatically transforming the initial model using the 

Propagation of Variance method (PoV) [2].  

The Initial specifications are also transformed to handle 

both the constraints and the objective function robustness. 
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The optimization considers both the Moment model and 

the Robust specifications. Depending on the model type (white 

box or not), one can use either deterministic [3] or stochastic 

[4] optimization algorithms. In the example presented further, 

an adapted Particle Swarm Optimization (PSO) algorithm is 

proposed as it doesn’t need the derivative information [4]. The 

particularity of our PSO lies in its constraint-handling 

mechanism that consists of a closeness evaluation of each 

particle to the feasible region. This mechanism “pushes” the 

particles towards the feasible region using interval arithmetic 

and then focuses on the objective function to improve the 

particles’ fitness while fulfilling the constraints. 

B. Robust model and specifications  

Recent works in robust optimization propose various 

robust formulations [5]: Worst-Case formulation, Gradient 

Index Optimization... In this work, the Initial model and 

specifications are transformed into the Robust model and 

specifications as follows: 
Initial model and specifications Robust model and specifications 

 
 

 
                              

                         
       

       
                         

   

 
 
 

 
                                                             

                                                
                       

                       
                         

   

where   is the objective function,   are the input parameters, 

  are the output parameters,   are the constraints,     and    

are the lower and upper bounds of  , and    and     are the 

lower and upper bounds of  .  

The robust objective function    is [6] : 

            
  

  
 
       

  

  
 
 (1) 

where   
  and   

  are obtained by minimizing respectively    

and   . The factor   (     ) expresses a specific tradeoff 

between the performance and the robustness of     
 The robust constraints   , obtained by the Propagation of 

Variance method, evaluate output statistical Moments (   and 

  ) from input ones, as in (2). It is expressed from a second 

order Taylor expansion [2].  

          

 
 
 
 
 

 
 
 
          

 

 
 

   

   
 
       

 

 

   

  
    

  

   

     

  

   

   

  
 

 
  

   

   
 
     

 

   

 

 

   

   
   

      

     

 

   

 

 

   

   

 

  (2) 

where   is the model dimension. 

 With white box model, exact derivatives are available 

which fosters the use of deterministic algorithms [3]. With 

black box, the Finite Difference method performs the first and 

second derivatives by computing          the initial 

model. Consequently, the PoV method is less evaluation 

consuming compared to the traditional Monte-Carlo 

simulation (10
6
 trials). This is all the more important that it is 

coupled with optimization algorithm.  

III. NUMERICAL RESULTS AND DISCUSSION 

Numerical tests have been performed on the robust optimal 

design of a permanent magnet motor [2]. We consider the 

analytical model with 10 degrees of freedom. The Initial 

specifications consist in minimizing the volume    while 

satisfying the parameter domains.  

The Robust optimization approach has been implemented 

in Matlab coupled with the industrialized optimization 

software Pro@DESIGN [7]. The PSO algorithm was run with 

4 particles and 50 iterations. 20 runs were performed for each 

test which corresponds to 4000 model evaluations. 

In order to emphasize the interest of our approach, a 

classical procedure is applied and compared with our proposal. 

The classical procedure consists in a non-robust optimization 

followed by a sensitivity analysis. 

The classical optimization gives a non-robust optimal 

solution. The results of the sensitivity analysis by Monte-Carlo 

(10
6
 trials) are              and              (see Fig. 

3). To improve the robustness of this solution (decrease    , 

see Fig. 1.a), numerous analysis have to be performed in order 

to identify on which design parameters and directions to play.  

With our approach, the tradeoff between     and     may 

be fixed by the designer by setting the value of   in the robust 

objective function (1). As the choice of   is not obvious, it is 

also possible to draw the Pareto front which gives the designer 

more flexibility to choose a solution that fits at best his needs 

in term of robustness (see Fig. 3). 

As illustrated in Fig. 3, the solution with a mean of 

             and a standard deviation of              

can be a good compromise. This compromise solution leads to 

a loss of 0.8% in the mean and a gain of 7.6% in the standard 

deviation compared to the non-robust solution. This solution 

allows a better control of the volume variability while being 

near the optimal mean (0.8%). In the full paper, more results 

and in-depth discussion concerning the potential loss of the 

performance and gain of the robustness will be provided. 
 

 
Fig.  3 The Pareto front:    vs     
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