
Abstract—This paper presents a multi-objective optimization 
strategy assisted by three Kriging surrogate models: ordinary 
Kriging, first-order universal Kriging and second-order 
universal Kriging. These Kriging surrogate models present 
analytical optimization functions, which are accurate and fast to 
evaluate. A multi-objective particle swarm optimization 
(MOPSO) approach was chosen to deal with the robust 
optimization problem and to find out the set of robust optimal 
solutions that matches with the problem requirements. The 
experiments were performed in a robust version of the TEAM 
problem 22. 

Index Terms — Kriging surrogate models, particle swam 
optimization, robust optimization, TEAM 22. 

I. INTRODUCTION 
The process of modeling the real system to be optimized 

involves several sources of uncertainties [1], [2]. For instance, 
precision can be lost when constructing a computational 
model of the optimization parameters; the environment 
(factors such as humidity, pressure, and temperature) may 
produce effects on the real system, that are difficult to be 
quantified; there may be measurement imprecision in the 
estimative of the objective functions and of the optimization 
parameters. A possible approach for dealing with uncertainty 
factors consists in constructing an optimization model, which 
includes additional parameters that reflect the uncertainty 
effect [3]. Therefore, because of adding the uncertainties, it is 
easy to produce a robust optimization in the objective and 
constraints functions. Robustness aims to find the robust 
solutions by the uncertainties for meeting the problem 
statement. [4]. 

The optimization process often requires approaches to 
alleviate the time spent for the simulations. Therefore, in this 
paper, a multi-objective optimization strategy using Kriging 
surrogate models, which is determined by comparing the 
accuracy of three different Kriging models. And the robust 
multi-objective PSO (MOPSO) is used to get the robust 
Pareto-optimal values of objective function. In addition, its 
behavior is investigated through application to the robust 
version of TEAM problem 22.  

II. ROBUST OPTIMIZATION 

A. Multi-objective Robust Optimization 
The robust formulation based on the worst case philosophy 

is presented as follows. Considering the design variables x 
and the uncertainty parameter p, the vector of objective 

functions is defined as f(x, p). Thus, the unconstrained robust 
minimization problem is defined as: 

min max ( , )
∈ ∈x X p P

f x p  (1) 

The worst case vector of objective function fwc is defined as: 

{ }wc ( , ) max ( , ), 1, ,i i i m
∈

= = "
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f x P f x p  (2) 

By using the notation in (2), solving (1) consists in finding the 
set of robust solutions X*: 

{ }* * *
wc wc| , ( , ) ( , )= ∈ ∃ ∈ ≺X x X x X f x P f x P  (3) 

where the symbol≺means fwc (x, P) ≤ fwc (x*,P) and fwc (x, P) 
≠ fwc (x*,P). 

The robust Pareto front Y* is the image of X*, considering 
the worst case performance of the elements from X*, then: 

* * * *
wc ( , ),= ∈Y f x P x X  (4) 

The robust Pareto front Y* is composed by worst case 
points as shown in (4). Therefore, Y*, or some of its elements, 
may be outside of the robust objective space f(X, P), 

( , ) ( , ), ,f f= ∈ ∈X P x p x X p P  (5) 

However, this does not affect our proposed method since 
the worst case points are used only as reference points to 
guide the search to the non-dominated robust solution set.  

Some studies utilized an evolutionary approach to solve a 
constrained multi-objective electromagnetic design problem. 
However, the computational cost is very high. In this paper, 
the Kriging surrogate models will be applied to improve the 
efficiency of the optimization process[5]. 

B. Kriging Surrogate Models 
In the Kriging method, the response function of a 

deterministic computer experiment is given by 

( ) ( ) ( )TZ ε= +fx x β x  (6) 

where X is the position vector with n dimension, f(x)=[f1(x), 
f2(x),…, fk(x)]T is the regression function, β =[β1, β2, …, βk]T is 
the unknown vector of regression coefficients, f(x)Tβ is called 
a drift function showing the average behavior of response Z(x), 
and ε(x) is a random error term with E[ε(x)]=0. 

According to the different drift functions, Kriging models 
are generally divided into Simple Kriging, Ordinary Kriging, 
and Universal Kriging. Universal Kriging is a non-stationary 
geo-statistical method and its drift function is a general linear 
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function. Due to complexity of equation calculation, it is 
seldom investigated. The universal Kriging equations are 
generally expressed as follows: 
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where λi is unknown coefficient, δk is Lagrange multiplier, and 
fk(xj) is the basis function, which is normally a polynomial set 
for universal Kriging. 

According to the different k values of the basis function, 
the Kriging method is classified into the ordinary Kriging 
(zero-order universal Kriging), first-order universal Kriging, 
second-order universal Kriging. 

The stochastic component has a mean value of zero and 
following covariance: 

[ ] ( )2( ), ( ) ,i j i jCov Z Z Rσ= ⎡ ⎤⎣ ⎦x x R x x  (8) 

In general, for Kriging, the covariance function should be 
also defined. In this paper, for samples xi and xj, the Gaussian 
covariance function is defined as follows: 
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where θ = [θ1,…, θD]T is a covariance parameter vector, which 
influences the effect of covariance function along direction. 

For the Gaussian covariance function, the best covariance 
parameter θ can be obtained by Maximum Likelihood 
Estimation. So the unknown coefficients in Kriging surrogate 
models are determined based on all sampling points and 
objective values. Then the estimator at unknown point x is 
obtained by a linear combination of the sampling values as 
shown in (10). Then, the MOPSO is used to search for Pareto-

optimal solutions of the response model constructed by 
Kriging surrogate models. 
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Once the Kriging surrogate models with Latin Hypercube 
Sampling (LHS) are constructed, during optimization, the 
performance analysis can be applied directly to the 
approximate response surface so that the computational cost is 
reduced. Therefore, the proposed optimization algorithm is 
naturally suited for application in electromagnetic design 
optimization. 

III. NUMERICAL EXAMPLE 
The TEAM Problem 22 is an optimal design of a 

superconducting magnetic energy storage device to achieve 
the stored energy of E0=180 MJ with minimal stray field. In 
this paper, the version of three design variables is 
investigated. The robust optimal design problem is formulated 
as [5]: 
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where gwc(x, P’) is measured in A/mm2. The first objective 
quantifies the stray field. The second objective measures the 
perceptual deviation from E0 to computed energy E. Finally, 
the constraint function is addressed to ensure the quench 
condition. In this paper, uncertain variables are H2 and D2, a 
fixed uncertainty is 0.01m for P’ in Table I, ΔH2 and ΔD2 is 
the uncertainty. The main goal of this paper is to find the set of 
minimum X* in (11) and the robust Pareto front associated 
with X*. 

Fig.1 shows the parameters for TEAM 22, and Fig. 2 
shows the Pareto front by the deterministic multi-objective 
problem. The discussion of detailed robust optimization 
results with the presence of uncertainties in variables H2 and 
D2 will be presented in the full paper. 
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Fig.1. Configuration of the SMES device. 

 
Fig.2.  Pareto front by the deterministic multi-objective problem. 

TABLE I 
PARAMETERS FOR TEAM 22  

Unit[m] R1 R2 H1 H2 D1 D2 ΔH2 ΔD2 
min - 2.6 - 0.408 - 0.1 - - 
max - 3.4 - 2.2 - 0.4 - - 
fixed 2.0 - 1.6 - 0.27 - 0.01 0.01 


