
Abstract— Multiobjective optimization problems (MOPs) 

consist of several competing and incommensurable objective 

functions. Recently, as a search and optimization technique 

inspired by nature, evolutionary algorithms (EAs) have been 

broadly applied to solve MOPs. Various EAs have been proposed 

for this purpose, and their usefulness has been demonstrated in 

several application domains of science and engineering. In this 

paper, we propose the unrestricted population-size evolutionary 

multiobjective optimization algorithm (UPS-EMOA) approach 

combined with chaotic sequences (CMOA). Our approach 

integrates the merits of both UPS-EMOA and chaotic sequences 

to improve the efficiency of optimization procedure. Numerical 

results of transformer design optimization demonstrate the 

effectiveness of the proposed CMOA when compared with the 

UPS-EMOA approach to preserve the diversity of the solutions 

and find nondominated solutions. 

Index Terms— Transformer design optimization, evolutionary 

algorithms, multiobjective optimization, chaotic sequences. 

I. INTRODUCTION 

The design of a transformer must meet minimum 

requirements of efficiency and regulation, maximizing the 

power to be transferred per unit of mass or volume, and 

supports well defined a maximum elevation of temperature. 

The transformers design optimization (TDO) problems [1] are 

typically multiobjective optimization problems (MOPs) under 

complex constraints. 

Since mid-1980s, a considerable amount of multiobjective 

evolutionary algorithms have been presented to solve the 

MOPs [2]. Aittokoski and Miettinen [3] proposed the 

unrestricted population-size evolutionary multiobjective 

optimization algorithm (UPS-EMOA). The basic feature of 

UPS-EMOA is the use of a population that has no artificial 

size limit. 

On the other hand, many chaotic maps in the literature 

possess certainty, ergodicity and the stochastic property. 

Recently, chaotic sequences have been adopted instead of 

random sequences and interesting and somewhat good results 

have been shown in many applications. Examples of chaotic 

sequences applications are presented in [4],[5]. 

In this paper, we propose a chaotic approach integrated with 

the UPS-EMOA with the adopted acronym CMOA. 

Simulation results of TDO demonstrate the effectiveness of the 

proposed CMOA when compared with the UPS-EMOA.  

II. FUNDAMENTALS OF THE TDO 

The transformer considered in this work is a shell core, dry-

type, single-phase transformer with the following ratings: S = 

400 VA, voltages V1 = 110 V and V2 = 220 V, frequency equal 

to 50 Hz, and minimum efficiency of 80%. Fig. 1 shows the 

geometry of the transformer with the dimensions of core, 

primary (N1) and secondary (N2) windings.  

 
Fig. 1. Transversal transformer cutaway: dimensions of core, primary (N1) 

and secondary (N2) windings. Furthermore, the transformer has a profundity t. 

 

The multiobjective optimization problem is to minimize 

mass (f1) and the losses (f2) while ensuring the operational 

requirements. The design variables are the core dimensions, 

turns of windings, and currents densities. 

III. DESCRIPTION OF THE UPS-EMOA AND CMOA  

    In this section, the UPS-EMOA is first described, followed 

by the CMOA and its features are mentioned. 

A. The basic UPS-EMOA 

The UPS-EMOA presents the following features: i) growing 

population contains all non-dominated solutions found during 

the optimization; ii) continuous convergence to the non-

dominated set because the population cannot oscillate; iii) 

improved efficiency in the beginning of the process (small 

population converges faster); and iv) better capability to 

capture the characteristics of the Pareto optimal set (higher 

number of points in the end). The steps of the UPS-EMOA can 

be summarized as follows [3]: 

Step 1: Initialize the population using minsize random points 

within the given search space. 
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Step 2: Evaluate the objective function values of the new 

points. 

Step 3: Combine the current population with the new points. 

Identify non-dominated solutions and move all these to the 

next population. If the minimum size of population is not 

reached, take non-dominated solutions from the remaining 

points and continue until the minimum size is reached. 

Step 4: Select randomly the burstsize points from the current 

population to be used as parents. Generate one new child point 

for every parent point using the point generation mechanism of 

differential evolution (DE) [6]. In the creation of the new 

point, all points in the current population may participate. 

Points which are not inside the given search space are 

truncated to the border, similarly as in NSGA-II (Non-

Dominated Sorting Genetic Algorithm – version II) [7]. 

Step 5: Evaluate the objective function values of the child 

population, and if the budget for objective function evaluations 

(adopted stopping criterion) is not exhausted, go back to Step 

3. 

B. The proposed CMOA approach 

DE has proven to be a promising candidate for optimization 

of real-valued, multi-modal objective functions. Recent report 

[8] has highlighted excellent performance of DE approaches 

on benchmark functions.  

The UPS-EMOA uses a classical DE approach. However, 

choosing suitable control parameter values is, frequently, a 

problem dependent task and requires previous experience of 

the user. The control parameters of crossover rate (CR) and 

mutation factor (MF) of DE are generally the key factors 

affecting the DE’s convergence.   

An essential feature of chaotic systems is that small changes 

in the parameters or the starting values for the data lead to 

vastly different future behaviors, such as stable fixed points, 

periodic oscillations, bifurcations, and ergodicity. 

In the proposed CMOA, chaotic sequences generated by 

logistic map are employed to tune of CR and MF factors of DE 

in range [0,1]. The utilization of chaotic sequences in tuning of 

DE’s control parameters can be useful to escape more easily 

from local minima than with the traditional DE approach with 

constants values for CR and MF. 

IV. OPTIMIZATION RESULTS 

Simulation results in Table I showed the performance of 

the UPS-EMOA and the proposed CMOA in terms of spacing 

and Euclidian distance indices. By the result shown in Fig. 2, 

the proposed CMOA slightly outperformed the UPS-EMOA 

approach to a TDO design. Nevertheless, when the diversity of 

the Pareto set is compared, CMOA’s diversity is better than 

the UPS-EMOA one. The results of UPS and CMOA with 

arithmetic mean minor of the normalized f1 and f2 values are 

presented in Table II. 
TABLE I 

SPACING AND EUCLIDIAN DISTANCES INDICES  

(MEAN OF 30 RUNS WITH NORMALIZED OBJECTIVE FUNCTIONS VALUES) 

Indices UPS-EMOA CMOA 

                  Spacing (f1,f2) 0.000875 0.001146 

          Euclidean distance (f1,f2) 0.8434 0.7808 
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Fig. 2. Pareto front (filtered in 30 runs) of UPS-EMOA and CMOA. 

 
TABLE II 

COMPARING OPTIMIZED AND ANALYTICAL RESULTS 

Parameter Analytical UPS-EMOA CMOA 

c  [cm] * 2.5  2.6 1.6 

t   [cm] * 4.0  4.0 4.0 

hw [cm] * 15   10 10 

bw [cm] * 2.5  1.5 1.8 

N1 231 210 327 

N2 507 423 659 

Mass [Kg], f1 8.1  6.11 4.20 

Losses, f2 0.08 0.07 0.08 

* optimized variables  

V. CONCLUSION 

This paper proposed a CMOA to TDO. In terms of solution 

quality and convergence of the Pareto front, the results show 

that the CMOA presented promising solutions. As future 

direction of research, we will use statistical tests to improve 

the evaluation process of the performance of the UPS-EMOA 

and CMOA. 
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