
Abstract—This paper presents the fundamental principle of the 

extended finite element method (XFEM) for the analysis of 

electric field in both dielectric and conductors. This method 

provides an accurate approximation for locally non-smooth 

features within finite elements, such as singularities, 

discontinuities, and high derivatives. An alternative enrichment 

function is introduced to improve the approximation shape 

function of the classical finite element method (CFEM). In XFEM, 

the non-smooth solutions are modeled independent of the mesh 

and the level set method is employed to describe the interfaces 

among different materials in one finite element. To demonstrate 

the advantages, the XFEM is compared with CFEM, analytical 

method and experiments by solving some electric field problems. 

Index Terms—Electric field, extended finite element method, 

level set, thin layer, crack tip. 

I. INTRODUCTION 

In a large number of electromagnetic applications, the 

quantities of electromagnetic field change rapidly over length 

scales which are small in comparison to the solution domain. 

Such examples include the high and steep electric field 

distribution at the cable termination, the high frequency 

magnetic field distribution due to the skin-effect in a solid 

conductor [1], and the electric field containing movable 

charges very closely to the sharp tip of conductor, as shown in 

Fig. Fig. 1 (a), (b) and (c) respectively, etc. To model such 

phenomena, the solutions typically involve discontinuities, 

singularities, high derivatives, or other non-smooth properties. 

      
                 (a)                               (b)                                  (c) 

Fig. 1 Singular electric field in cable termination (a), high frequency magnetic 

field due to skin effect (b) and singular electric field closed to sharp tip  

 

In past decades, the extended finite element method 

(XFEM), which was firstly proposed by Belytschko, et al [2], 

provides a mesh-independent approximation for non-smooth 

problems. Aiming to the approximation of non-smooth 

solutions, the traditional approach is to employ the polynomial 

approximation, which depends on meshes that conform to 

discontinuities and are refined near singularities and high 

gradients [3]. However, in extended finite element method, the 

strategy is to enrich a polynomial approximation space such 

that the non-smooth solutions can be modeled independent of 

the mesh. The enrichment is realized by appending special 

shape functions, which is not necessarily polynomial and 

matches the assumed characteristics of the solution and thus 

ensure good local approximation, to traditional polynomial 

approximation,. In XFEM, a locally enrichment function, 

described as a discontinuous shape functions, is adding to the 

classical FEM through a partition of unity method.  

II. PRINCIPLE OF EXTENDED FINITE ELEMENT METHOD 

The classical FEM depends on the construction of 

meshes aligning with the interfaces and boundaries.  The 

meshes are refined near domains which possess high 

variant field over very small space, discontinuity across an 

interface, etc. The accuracy is improved for smooth 

solutions, such as super convergent patch recovery [4].  

In the XFEM, the interface between materials is not 

aligned with the edges of finite elements. The level sets can 

provide smoother optimal boundaries and material interfaces 

for topology optimization [5]. In this paper, level sets are 

introduced for the mathematical description of interface in the 

enrichment approximation. Fig. 2 pictured the interface 

described as zero level set function (X)=0. 

       W1:ψ(X)>0 
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Fig. 2. The interface representation with level set function 

In the discretized domain, I is the set of all nodes, I
*
 is 

the set of the enriched nodes, I
*∈I. The approximation of a 

potential function u(X) may be defined as [2] 

       
*

*= +h

i i i i

i I i I

u N u N a
 

    X X X X                  (1) 

where the first term on the right-hand side is the standard FE 

approximation, the second the enrichment, which extends the 

standard FE approximation, i the index number of FE nodes 

contained in set I, or the enriched nodes contained in I
*
, which 

is a subset of I. Ni and Ni
*
 are standard FE shape functions, 

in general, Ni =Ni
*
. The coefficients ui belong to the 

standard FE part and ai are additional nodal unknowns. The 

function (X) is called an enrichment function according to 

special and detailed knowledge for the solution problem. 

The products Ni (X)·(X) are local enrichment functions 

because their supports coincide with the supports of typical 

FE shape functions, leading to sparsity in the discrete 
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equations.   
Based on the number of enriched nodes in an element, an 

element may be cataloged into (i) the enriched element if all of 

its nodes are enriched and the interface are passing through the 

element; (ii) the FE element if none of its nodes is enriched, 

and (iii) the blending element if some or all of its nodes are 

enriched. No interface intersects the element.  

In the XFEM, different element integration methods are 

designed for the discontinuity in the enriched element, high 

gradient and singular enrichments. For discontinuity, 

decomposition of element into sub-elements aligning with the 

interface is a useful option for enriched element integration. In 

each sub-element, the numerical integration, such as Gauss 

quadrature, should be applied and the element integration is 

equal to the sum of the integrations of sub-elements.  

Based on the processing of classical finite element, the 

matrix equation of XFEM may be achieved as 

uu ua u

au aa a

    
=    

    

K K PU

K K PA
                                    (2) 

where, U and A designate the column vectors of nodal 

electrical potentials and additional unknowns, respectively. 

Other variables will be introduced in full paper. 

III. SIMULATION VERIFICATION OF XFEM 

A. 1D electric field  

Fig. 3 shows parallel plate electrode system containing three 

dielectrics, FEM model and XFEM model. The width of three 

dielectrics are l1=10mm, l2=1mm and l3= l4=8mm. The middle 

of the three dielectrics may be regarded as a very thin layer 

material because the width of middle dielectric is about 3.8% 

of that of the others. The permittivity of three dielectrics are 

1=0, 2=20 and 3=30, respectively. The imposed voltage is 

10V. The electrical potential approximation may be written as 

       
*

ˆ= ( ) + ( ( ))h

i d i

i I i I

x N x H N x  

 

                        (3) 

where, ( )dH x
is the Heaviside jump function. 

The related error comparison between CFEM and XFEM is 

listed in Table I. The meshes used in both XFEM and CFEM 

will be improved in the full paper and the computation 

complexity will be evaluated by comparison the results of 

XFEM with those of CFEM and analytical solutions. 
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Fig. 3  Parallel plate electrode system containing three dielectrics 

B. 2D electric field  

The conducting current distribution in a non-uniform electric 

field will be analyzed by XFEM. The electrode structure, one 

2D plate electrode system with crack, may be shown in Fig. 4, 

which may describe the field concentration effects of the crack 

tip. Fig. 4 also illustrates the experiment device for the 

measurement of electric field distribution according to the 

duality theory of static and steady electric fields. The electrical 

bridge is used to measure the electrical potential distribution. 

The accuracy and effectiveness of XFEM will be verified by 

comparison with experiment and CFEM. 
TABLE I 

THE COMPARISON OF NODAL ELECTRICAL POTENTIAL 

X (mm)  XFEM   (V) CFEM   (V)  Related Error 

(%) 

5 3.15790 3.15790 0.00 

10 6.31579 6.31579 0.00 

11 6.63158 6.63158 0.00 

15 7.47368 7.47368 0.00 

19 8.31579 8.31579 0.00 
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Fig. 4. The 2D plate electrode system with crack and the experiment device 

IV. CONCLUSION 

In this paper, the eXtended Finite Element Method for 

electric field analysis is presented. An enrichment function 

may improve the standard finite element approximation in the 

cases of discontinuities, singularities, high derivatives, or other 

non-smooth properties. One of the advantages of XFEM is that 

the interfaces do not align with the edges of FE meshes. The 

numerical simulations conclude that XFEM is able to simulate 

discontinuities and singularity behaviors of the electric field on 

a mesh that is independent from the interface location. 
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