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Abstract—Projection-based model reduction is a well estab-
lished methodology for computing fast frequency sweeps of finite
element approximations to passive microwave structures. This
contribution presents a novel provable error bound for moment-
matching reduced-order models of lossless systems. It improves
over existing methods by increasing the accuracy of the estimate
and by reducing the numerical overhead. Numerical studies
demonstrate the benefits of the suggested approach.

Index Terms—Reduced order systems, approximation error,
finite element methods, microwave devices.

I. Introduction

Methods of model-order reduction (MOR) provide very effi-
cient tools for computing fast frequency sweeps of linear time-
invariant systems. Most of them are subspace methods [1]-
[4] that increase the dimension of their respective projection
bases in an iterative process. To avoid the computational costs
for constructing and solving an oversized reduced-order model
(ROM), it is critical to stop the subspace iteration as soon as
the ROM error meets a user-defined tolerance.

At present, the majority of the MOR methods utilizes
heuristic stopping criteria. To the authors knowledge, com-
putable and provable error bounds have only been reported
in [3] and [4]. These estimates are based on a lower bound
for the inf-sup constant, which is computed by the successive
constraint method (SCM) [3]. Especially for resonant struc-
tures, the SCM is often more expensive than the whole process
of generating the ROM, because eigenvalue problems of the
dimension of the original system have to be solved. Further-
more, in the lossless case, the inf-sup constant corresponds to
the distance from the working frequency to the nearest pole
of the transfer function. Since the poles lie on the frequency
axis, the distance may become arbitrarily small, which limits
the usefulness of these methods in the lossless case.

We here propose a novel error estimator for lossless struc-
tures and MOR methods of Krylov type. Krylov subspace
methods stand out for their efficiency, because they usually
require only one single matrix factorization at a user-defined
expansion point. The new error estimator is based on the fact
that Krylov subspace methods quickly resolve the eigenvectors
in the vicinity of the expansion point [5]. A spectral decompo-
sition of the residual vector into converged and non-converged
eigenvectors leads to the upper error bound. It is computable
at very reasonable cost: Except for one additional matrix
factorization for the whole frequency sweep, all quantities can

be computed efficiently on the scale of the ROM. In its basic
form, the error bound is only applicable to systems in immit-
tance form, which may exhibit singularities. To overcome this
shortcoming, the full paper will also include an asymptotical
error estimator for scattering matrices. Our theoretical analysis
does not include the effects of round-off errors.

Numerical examples demonstrate the efficiency and reliabil-
ity of the suggested approach.

II. Model-Order Reduction

Finite element (FE) discretization of lossless microwave
structures results in linear systems of the form(

S − k2
0T

)
x = jk0η0b, (1a)

z = bT x, (1b)

where S ∈ CN×N denotes the stiffness, T ∈ CN×N the mass
matrix, b ∈ RN the excitation vector, x ∈ CN the solution
vector, and k0, η0 ∈ R the freespace wave number and char-
acteristic impedance, respectively. For ease of presentation,
we restrict ourselves in (1) to the single-input, single-ouput
(SISO) case and transverse electromagnetic (TEM) modes
as excitation. The extension to multiple-input, multiple-ouput
(MIMO) systems is straightforward, and handling transverse
electric (TE) or transverse magnetic (TM) modes as excitation
just requires a post-processing scaling operation [2].

The expansion point k2
0,exp for the single-point MOR method

is usually selected to be in the middle of the frequency band
under investigation, B f . By introducing the shifted frequency
parameter κ = k2

0 − k2
0,exp, we arrive at the system

(A − κT) x = b, (2a)

z = jk0η0bT x, (2b)

where A = S − k2
0,expT stands for the FE matrix at the

expansion point. To achieve moment-matching, the projection
matrix Q ∈ RN×n has to span the Krylov subspace range(Q) =

Kn(A−1T,A−1b) [1]. Note that the construction of the pro-
jection matrix just requires one single matrix factorization.
Galerkin projection of (2) onto Q leads to a ROM of the form(

Ã − κT̃
)

x̃ = b̃, (3)

z = jk0η0b̃T x̃, (4)



with

Ã = QT AQ, T̃ = QT TQ, b̃ = QT b. (5)

To ensure numerical robustness, the projection matrix Q is
computed by means of the Arnoldi algorithm [5].

III. Error estimation

The following error estimator is based on the assumption
that the eigenvalues of a converged ROM coincide with the
eigenvalues of the full model in the frequency range of interest.
This assumption is justified by two facts: First, the shift-and-
invert preconditioned Arnoldi method of Section II is known
to first converge against the eigenvalues in the vicinity of the
shift k2

0,exp [5]. Second, non-resolved eigenvalues give rise to
noticeable errors in the transfer function, since the eigenvalues
lie on the frequency axis. The error in the solution vector,

e = x −Qx̃, (6)

fulfills the residual equation

(A − κT)e = r, (7)

wherein r denotes the residual of (2a). Let (κi, vi) denote
the eigenpair of the eigenvalue problem associated with (2a).
Expanding the error e into eigenvectors vi of the original
model, together with the Galerkin condition QT r = 0, leads to
a representation of the error in system impedance ez:

ez = −jk0η0rT V diag
1

κi − κ
VT r, (8)

with V =
[
v1 . . . vN

]
. Under the assumption that the

eigenvectors of the original model are approximated well by
the ROM in the frequency band B f , we can derive from (8)
the error bound:

|ez| ≤ k0η0rT V diag
1

|κi − κ|
VT r ≤

k0η0

min
κi<B
|κi − κ|

rT VVT r. (9)

Note that the term rT VVT r can be evaluated efficiently on the
level of the ROM, from quantities that are readily available in
the Arnoldi iteration. Details will be given in the full paper.

IV. Numerical Example

Fig. 1 presents the structure of a bandpass filter. FE dis-
cretization results in a system of 213 472 degrees of freedom.
We consider 201 equidistant evaluation points in the frequency
band B f = [0.58, 0.63] GHz and set the expansion point at
f = 0.6 GHz. To quantify the overall error in the frequency
band, we employ the error measure E∞:

E∞(M;B f ) = max
i, j,n

∣∣∣Mi j( fn)
∣∣∣ , (10)

where M is a frequency-dependent error matrix. The estimated
error is computed from (9), and the true one is given by

M = ZROM − ZFE . (11)

Fig. 2 presents a comparison between the true and the
estimated error. The vertical line indicates the ROM dimension
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Figure 1. Bandpass filter structure. All dimensions are in mm.
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Figure 2. Comparison of true error and estimated error.

at which the eigenvalues in the frequency band are converged
and the error estimate (9) becomes valid. As long as the
true error is above the noise floor in the order of 10−8, the
proposed error estimate is an upper bound, as predicted by
theory. The error estimator does not capture the noise floor
correctly, because the Arnoldi algorithm underestimates round-
off errors in the residual. However, this represents no severe
practical limitation, because underestimation only occurs when
the ROM is already converged.
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