
Abstract—The volume integral methods are particularly well 
suited to compute field in the air domain which don’t need to be 
meshed. However, their application leads to solve dense matrix 
systems. The Adaptive Cross Approximation (ACA) is an 
algebraic method allowing the compression of these matrices. 
This paper presents the ACA technique applied for a Volume 
Integral Method (VIM) in order to solve nonlinear magnetostatic 
problems.  

Index Terms— Adaptive Cross Approximation, acceleration 
method, volume integral equations, magnetostatics, nonlinear 
resolution. 

I. INTRODUCTION 

Integral methods have many advantages over finite 
elements method such as: far interactions are computed 
accurately, and especially avoiding the mesh of the air. Their 
main drawback is the obtaining of a full interaction matrix 
whose computation time and memory size increase in a 
quadratic complexity. Many methods have been developed to 
limit this drawback. The Fast Multipole Method (FMM) [1] is 
one of the most successful approaches. However this method 
presents some difficulties in regard to the algorithm 
parallelization and to the solver preconditioning. 
 The Adaptive Cross Approximation [2] has been 
successfully applied for many integral methods such as the 
Boundary Element Method [3] and the Moment Method [4]. 
This approach is less intrusive in the source code, allows better 
solver preconditioning than the FMM and is easily 
parallelizable. 

 In this paper, the application of ACA for the Volume 
Integral Method to solve nonlinear magnetostatic problems is 
presented. The section II presents the integral formulation 
using magnetic scalar potential. The section III introduces the 
resolution of the nonlinear magnetostatic problems. The 
outlines of the ACA and of the hierarchical matrix methods are 
described in the section IV. The section V is dedicated to a 
numerical example.  

II. VOLUME INTEGRAL EQUATION FORMULATION  

Let us consider a ferromagnetic material placed in a static 
magnetic source field H0. The magnetic behavior law is 
defined by:  

HHM )(χ= ,                (1) 

where M  is the magnetization, H the magnetic field and χ the 
magnetic susceptibility. Let us consider that the material 
region is simply connected and containing no current sources. 

The magnetic fields H and H0 derive then respectively from 
the magnetic scalar potential Φ and Φ0. The volume integral 
method [5] is used and we can write: 
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where V is the volume of the material, r  and r’  are 
respectively the coordinates of computation and integration 
points.  

Only the material region is meshed and the magnetic scalar 
potential is discretized with first order nodal shape functions. 
A collocation approach applied on (2) at the N mesh nodes 
leads to a system of algebraic linear equations: 
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where [I] is the identity matrix and [A] the full interaction 
matrix. 

III.  NONLINEAR FORMULATION  

This part proposes a modified fixed point method [6] to 
solve the nonlinear magnetic field problem. 

The behavior law (1) is written: 
)()( HSHHM += FPχ  ,      (4) 

where χFP is the constant slope of the modified point scheme 
and S the nonlinear residual. The fixed point can be found by 
iteratively updating the nonlinear residual. Using the behavior 
law (4) instead of (1) in the VIM (2), the following equation 
must be solved at each iteration:  
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where k is the iteration number. Using the previous 
formulation (2) and (3), the resolution of (5) leads to a system 
of algebraic linear equations of the form: 
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where B is the contribution vector of the nonlinear residual. 
The value of the residual S after the iteration k is given by: 
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If the norm of the difference of χ between two iterations is 
lower than a given criterion, the algorithm is stopped. 
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IV. THE ADAPTIVE CROSS APPROXIMATION TECHNIQUE 

A. Outline of the ACA technique 

The ACA technique is based on the approximation of a 
block matrix by a product of two matrices of smaller sizes. 
This product approximates the initial matrix by one with a rank 
much lower but with a sufficient accuracy. If M m×n is the 

considered m×n block matrix, its approximation nm×M
~

 can be 

written as :  

nppmnm ××× = VUM .
~ ,         (8) 

where pm×U  and np×V  are respectively m×p and p×n 

matrices. This decomposition is only useful if p < ½ 
min{m,n}. If the block is sufficiently smooth, the p value can 
be sufficiently low to lead to a high compression rate. Due to 
the approximation property (8), the following estimate holds 
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where ||.||F denotes the Frobenius norm of a matrix, and ε is a 
given criterion. The full ACA algorithm is presented in [2]. 
 The main advantage of ACA decomposition is that the 
evaluation of the entire matrix is not needed. Indeed, only the 
knowledge of p lines and p columns of the matrix is required. 
Therefore, it does not only decrease the needed memory, but 
also greatly limits the number of integral computations.  

B. Hierarchical Matrices  

To be efficient, the matrices to compress must involve 
interactions between distant subspaces where the integration 
kernel is smooth. To fulfil this criterion, the degrees of 
freedom in the mesh are renumbered. This task is performed 
with the help of a partition of the space thanks to an octree. A 
representation of the total matrix into sub-matrices is then 
obtained. It is called hierarchical matrix. Each sub-matrix is 
dealt either as near or as far interaction. In the first case, the 
sub-matrix is classically evaluated by a full matrix 
computation. In the second case, the block is compressed with 
ACA. 

For the nonlinear solving, the assembly of vector B in (6) 
is decomposed into a product of the form:  
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where [Bx], [By], [Bz] are assembly matrices of the derivative 
Green kernel and Sx, Sy, Sz are the three components of S. 
[Bx], [By], [Bz] are built only once and only depend on the 
mesh geometry. 

The ACA method combined with Hierarchical matrices are 
used to compute the first order matrix assembly [A] in (4) and 
the matrices assembly [Bx], [By] and [Bz] in (10). 

V. NUMERICAL RESULTS 

Let us consider the following contactor-like problem. The 
geometry description and the magnetic behavior law are 
described in Fig. 1a and 1b. The proposed procedure is 
applied for a mesh of 37000 elements. 

  
a. Contactor geometry b. Magnetic behavior law 

         Fig. 1. Description of the contactor-like problem 

 
 

a. Magnitude of magnetic field B  b. Computed energy evolution 

Fig. 2. Numerical results on a Intel Core i5 2.2GHz x64 CPU with 4Go RAM 

With a 1e-4 ACA criterion, only 1.9GB RAM are required for 
the assembly of the 4 interaction matrices in (6) and (10). 
Without compression, 8.3GB RAM would be necessary, thus 
the memory need is decreased by 77% with the proposed 
procedure. By using the modified fixed point method for (5)-
(7) with a χFP of 650, the nonlinear resolution converges after 
158 iterations with 6s for each iteration time. The computed 
magnetic field is given in Fig. 2a. The FEM is also applied to 
solve this problem using 1st and 2nd order magnetic scalar 
potential formulations thanks to the software FLUX®. The 
evolution of the total magnetic energy of the contactor with 
respect to the number of mesh elements is given in Fig. 2b. 
The three results converge to the same value. For the 1st order, 
VIM provides an accurate energy with relatively few elements. 

VI.  CONCLUSION 

The ACA compression technique has been applied to a 
nonlinear magnetostatic problem with a VIM using the 
magnetic scalar potential. The results are interesting 
concerning the treatment of fine meshes with a gain of 
memory. 
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