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Abstract—Shielding sheets are commonly used in the protec-
tion of electronic devices. With their large aspect ratios they
become a serious issue for the direct application of the finite
element method, as many small cells are required to resolve the
sheets, as well as the direct application of the boundary element
method due to the occuring almost singular integrals.

Impedance transmission conditions (ITCs) allow for finite
element formulations in the exterior of the sheet mid-line or
boundary element formulations on this mid-line only. We propose
and analyse boundary element methods of second kind for
ITCs of two different types for the time-harmonic eddy current
problem in two dimensions.

Index Terms—Computational electromagnetics, Eddy currents,
Electromagnetic shielding, Integral equations.

I. Introduction

The time-harmonic eddy current model [5] (time convention
exp(−iωt), ω > 0) in two dimensions reads

curl2D e(x) = iωµ(x)h(x), (1)
curl2D h(x) = σ(x)e(x) + j0(x), (2)

where the 2D rotation operators are defined by curl2D =

(∂y,−∂x)> and curl2D = (−∂y, ∂x), e and h denote the out-of-
plane electric and in-plane magnetic fields, σ is the (constant)
conductivity of the thin sheet of thickness d, and we assume it
to vanish elsewhere for simplicity, µ is the permeability (also
constant inside the sheet), and j0 is the out-of-plane imposed
current whose location is well separated from the conductor.
Inserting (1) in (2) outside the thin conductor and using the
identiy curl2D curl2D = −∆ we obtain

−∆ e = iωµ0 j0, (3)

where we assume non-magnetic material outside the sheet,
e. g., air. Furthermore, let γ =

√
−iωµσ = (−1 + i)

√
ωµσ/2.

II. Impedance transmission conditions

Several impedance transmission conditions have been de-
rived for the time-harmonic eddy-current model, so the shield-
ing element [1], the thin sheet conditions [2]–[3] and recently
by asymptotic expansions [6]–[9]. Using those ITCs we can
state the differential equation (3) up to the mid-line Γ of the
thin sheet, where two conditions couple electric or magnetic

fields on both sides. To define those we introduce the notation
for the mean and jump of both sides

[v] = v+ − v−, {v} = 1
2
(
v+ + v−

)
, (4)

where v stands either for the electric field e or the tangential
component of the magnetic field h · n⊥ = ∂ne/(iωµ), where
n is the normalised normal vector as shown in Fig. 1 and
n⊥ = (n2,−n1)> the normalised tangential vector. Note, that the
above mentioned ITCs are derived for smooth sheets without
kinks or endings, e. g., by neglecting derivatives along the
sheet. In this paper we consider two types of ITCs.
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Figure 1: Limit geometry for d → 0 for the impedance con-
ditions and integral equations. The original sheet of thickness
d is indicated with light shading.

A. Impedance transmission conditions of type I
For the most simple impedance transmission conditions the

electric field is continuous over Γ and the jump of the magnetic
field is proportional to the electric field. Using (1) we can write
directly for the (mean of the) electric field

[∇e · n] − β1{e} = 0, (5a)
[e] = 0. (5b)

Impedance transmission conditions of type I are for example
the so called ITC-1-0 and ITC-1-1, both derived by asymptotic
expansions, see [7]-[9], where the only parameter for the two
models is given by

βITC-1-0
1 = γ2d, βITC-1-1

1 = γ2d
(
1 + 1

6 γ
2d2

)
. (6)

The shielding element [1] can be seen as an ITC similar to (5)
with an additional term with ∂2

Γ
{e} arising in (5a), see [9].



B. Impedance transmission conditions of type II

Currently, the thin sheet conditions [3] which are based on
a similar idea as [2] are best known. They have the form

[∇e · n] − β1 {e} = 0, (7a)
[e] − β2 {∇e · n} = 0, (7b)

where

βMB
1 = 2γ tanh(γ d

2 ), βMB
2 = 2

γ
tanh(γ d

2 ). (8)

In [9] it has been shown that these conditions even with their
more complex structure does not improve the accuracy to the
simple ITC-1-0 or the shielding element [1]. An improvement
for both large and small skin-depth to sheet thickness ratios
can be observed by chosing [9]

βITC-2-1
1 =

2γ sinh
(
γ d

2

)
cosh

(
γ d

2

)
− γ d

2 sinh
(
γ d

2

) ,
βITC-2-1

2 = −d
(
1 − 2

γd tanh(γ d
2 )

)
,

(9)

at least for straight sheets. For curved sheets the conditions
ITC-2-1 include further terms including the curvature, and do
not possess the relatively simple structure (7) anymore.

III. Boundary integral formulations

As the differential equation (3) is extended up to the
interface Γ, we can represent the solution in R2\Γ as [8]

e(x) = −

∫
Γ

G(x − y) [∇e · n](y) dΓ(y)

+

∫
Γ

n · ∇yG(x − y) [e](y) dΓ(y) + N(x). (10)

where we use the Green’s kernel G(x−y) = −1/(2π) log(|x−y|)
and the Newton potential

N(x) = iωµ0

∫
R2

G(x − y) j0(y) dy. (11)

A. Boundary integral formulation for the ITCs of type I

The jump of the electric field vanishes and evaluating e(x)
in (10) for x→ Γ we obtain for the new unknown φ = [∇e ·n]

{e}(x) = −

∫
Γ

G(x − y) φ(y) dΓ(y) + N(x). (12)

Multiplying this equation by β1 and inserting (5a) gives the
integral equation defining φ ∈ L2(Γ)

φ(x) + β1

∫
Γ

G(x − y) φ(y) dΓ(y) = β1N(x). (13)

The integral equation is of second kind, i. e., the associated
operator is the sum of identity and a compact pertubation
which leads to system matrices for Galerkin boundary element
methods with conditioning number bounded independently of
the meshwidth. See [4] for another boundary integral equation
for ITCs of type I.

B. Boundary integral formulation for the ITCs of type II
Taking the mean of the limits x→ Γ from the two sides and

inserting (7) we get the mixed integral formulation of second
kind for the two unknowns φ = [∇e · n] and ψ = [e]

φ(x) + β1

∫
Γ

G(x − y) φ(y) dΓ(y) (14a)

− β1

{ ∫
Γ

n · ∇yG(x − y)ψ(y) dΓ(y)
}

= β1N(x),

ψ(x) + β2

{
n · ∇x

∫
Γ

G(x − y) φ(y) dΓ(y)
}

(14b)

− β2 n · ∇x

∫
Γ

n · ∇yG(x − y)ψ(y) dΓ(y) = β2∇xN(x) · n.

For the thin sheet conditions [3] and the impedance conditions
ITC-2-1 there is a unique solution (φ, ψ) ∈ L2(Γ) × H1/2(Γ).

IV. Asymptotic boundary element methods
We propose Galerkin boundary element methods for the

weak form of (13) and (14), which are the equations multiplied
with test functions and integrated over Γ. As test and trial
functions for the ITCs of type I (13) we may use piecewise
constants functions

S −1
0 (Γh) :=

{
vh ∈ L2(Γ) : vh ∈ P0(K j), j = 1, . . . ,Nh

}
,

on a panelization Γh of Γ with Nh straight panels K j of
maximal length h or piecewise linear, continuous functions

S 0
1(Γh) :=

{
vh ∈ L2(Γ) ∩C(Γ) : vh ∈ P1(K j), j = 1, . . . ,Nh

}
,

where the discretisation error in the L2(Γ) decays like O(h)
using S −1

0 (Γh) and, if the solution has higher smoothness due
to a smoothness of Γ, like O(h2) using S 0

1(Γh). For the ITCs
of type II (13) we may use either S −1

0 (Γh) or S 0
1(Γh) for φ and

we are obliged to use S 0
1(Γh) for ψ, where the convergence

rates follow accordingly.
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