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Abstract—The acceleration technique for extended boundary-
node method (X-BNM) has been proposed and its performance
has been numerically investigated. The results of computations
show the X-BNM with the radial point interpolation method is
always faster than the X-BNM with the moving least-squares
approximation regardless of the number of boundary nodes.

Index Terms—Boundary value problems, Partial differential
equations, Green’s function methods, Integral equations, Least
squares approximation

I. Introduction

Several boundary-type meshless methods [1]-[5] have been
proposed for solving the boundary-value problem of the partial
differential equation and have yielded excellent results in the
fields of science and engineering. Since the boundary elements
of a geometrical structure are no longer necessary among all
boundary-type meshless methods, the input data preparation
can be extremely simplified.

In the Boundary-Node Method (BNM) [1] is one of the
boundary-type meshless methods. In spite of a high usefulness,
the BNM is plagued by two demerits. First of all, integration
cells must be adopted for calculating matrix elements. This
means that a concept of elements partly remains in the BNM.
Second, a shape function lacks the Kronecker’s delta function
property. This causes the following problem: the number of
unknowns is equal to twice the number of boundary nodes.

In our previous work, the BNM has been reformulated
without using integration cells and its performance has been
investigated numerically [5], [6]. This method is called the
eXtended BNM (X-BNM). This work shows that the accuracy
of the X-BNM is much higher than that of the dual reciprocity
boundary element method. In addition, we have modified the
X-BNM for improving the accuracy degradation due to a
complex boundary shape [7]. In this way, the first demerit of
the BNM can be completely removed by using the X-BNM.
However, the second demerit of the BNM has been included
in the X-BNM yet.

Recently, the Radial Point Interpolation Method (RPIM) [8]
which is one of interpolation methods has been proposed. The
RPIM has an advantage that the shape function possesses the
Kronecker’s delta function property. Furthermore, the modified
RPIM has been also proposed for accelerating the computation
of the shape functions [9], [10]. If the RPIM were applied to
the X-BNM, the second demerit of the BNM could be removed
from the X-BNM completely.

The purpose of the present study is to apply the RPIM to the
X-BNM and to investigate the performance of the proposed
method numerically.

II. Shape Function

In the X-BNM, we assume that a solution and its nor-
mal derivative can be expanded by using shape functions.
Hence, we must define shape functions which are assigned to
boundary nodes. In this section we summarize two methods
to generate shape functions from N boundary nodes.

The Moving Least-Squares Approximation (MLSA) is well
known as one of interpolation methods. The approximate
function f h(s) of a function f (s) can be written by

f h(s) = pT(s) a(s), (1)

where s indicates an arclength along the boundary and p(s) =
[1, s, · · · , s(m−1)]T . a(s) can be determined by minimizing the
following functional:

J[a(s)] =
N∑

i=1

wi(s)[pT(si) a(s) − f (si)],

where wi(s) and si denote a weight function and an arclength
to the ith boundary node, respectively.

After minimizing J[a(s)], we can obtain

Φi(s) = pT(s) A−1(s) bi(s), (2)

where A(s) and bi(s) are defined by

A(s) =
N∑

i=1

wi(s) p(si) pT(si),

bi(s) = wi(s) p(si).

Note that the shape function Φi(s) in (2) does not satisfy the
following relation: Φi(s j) = δi, j where δi, j is the Kronecker’s
delta. Therefore, the number of unknowns equals twice as
much as the number of boundary nodes.

In order to resolve the demerit of the MLSA, the RPIM
has been proposed. In the RPIM, a combination of the radial
basis function ri(s) and the monomial basis function pi(s) is
used for the interpolation of the field distribution around the
ith boundary node. The approximate function f h(s) can be
rewritten by

f h(s) = rT (s) a + pT (s) b,



where r(s) = [r1(s), r2(s), · · · , rN(s)]T .
In order to determine a ∈ RN and b ∈ Rm, we enforce the

interpolation to satisfy the given value at nodes as[
R0 P0
PT

0 O

] [
a
b

]
=

[
f
0

]
. (3)

Here, R0, P0 and f are defined by

R0=

N∑
i=1

N∑
j=1

ri(s j) ei eT
j ,

P0=

N∑
i=1

m∑
j=1

s(m−1)
i ei e∗Tj ,

f =
N∑

i=1

f (si) ei,

where {e1, e2, · · · , eN} and {e∗1, e∗2, · · · , e∗m} are the orthonormal
system of the N-dimensional vector space and that of the m-
dimensional vector space, respectively.

By solving (3), we can get

Φ(s) =
[
rT(s), pT(s)

] [ R0 P0
PT

0 O

]−1

. (4)

where Φ(s)= [Φ1(s),Φ2(s), · · · ,ΦN(s)]T . Since shape function
Φi(s) exactly fulfills the following relation: Φi(s j) = δi, j, the
number of unknowns is equal to the number of boundary
nodes.

In this way, the demerit of the MLSA is removed com-
pletely. Throughout the present study, the X-BNM with the
MLSA and the X-BNM with RPIM are referred to as the X-
BNM(MLSA) and the X-BNM(RPIM), respectively.

III. Numerical Results

In this section, we investigate the performance of the
X-BNM(MLSA) and the X-BNM(RPIM). As an exam-
ple problem, we adopt the 2-D Laplace problem over
Ω ≡

{
x2 + (y/2)2 < 1

}
with the boundary condition:

− cosh πx sin πy+sinh πx cos πy on the boundary. All numerical
experiments are executed on an Intel Core 2 Duo, 1.86 GHz
processor.

The 10 points Gaussian quadrature is employed as the
integration method and the number m of order is fixed as
m = 2. In addition, the ith support radius Ri is defined by
Ri = γmin

(∣∣∣s mod (i+1,N) − si

∣∣∣ , ∣∣∣s mod (i−1,N) − si

∣∣∣) where γ is
fixed as γ = 1.47.

In the MLSA, the weight function is given by

wi(s) = ω (|s − si| /Ri) ,

ω(r) = H(1 − r)(1 − 6r2 + 8r3 − 3r4),

where H(x) denotes the Heaviside step function. In the RPIM,
the radial basis function is given by

ri(s) = ρ (|s − si| /Ri) ,

ρ(r) = H(1 − r)(1 − r)3(3r + 1).

Table I
Computational Cost for X-BNM.

(a) N = 256

CPU time [s]

Methods
Matrix in
Assembly

Solution of
Linear System Total

X-BNM(MLSA) 2.23 × 10−1 8.37 × 10−1 1.06 × 100

X-BNM(RPIM) 4.98 × 10−1 5.26 × 10−2 5.51 × 10−1

(b) N = 512

CPU time [s]

Methods
Matrix in
Assembly

Solution of
Linear System Total

X-BNM(MLSA) 7.18 × 10−1 7.90 × 100 8.62 × 100

X-BNM(RPIM) 7.49 × 100 8.41 × 10−1 8.33 × 100

(c) N = 1024

CPU time [s]

Methods
Matrix in
Assembly

Solution of
Linear System Total

X-BNM(MLSA) 2.53 × 100 1.46 × 102 1.49 × 102

X-BNM(RPIM) 1.08 × 102 8.40 × 100 1.16 × 102

Let us compare the speed of the X-BNM(RPIM) with that
of the X-BNM(MLSA). The CPU time of the X-BNM(RPIM)
and that of the X-BNM(MLSA) are shown in Tables I(a)-
I(c). The CPU time of the X-BNM(RPIM) required for the
matrix assembly increases drastically. Nevertheless, the X-
BNM(RPIM) is always faster than the X-BNM(MLSA) re-
gardless of the value of N.

From these results, we can conclude that the RPIM is useful
to accelerate the X-BNM.
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