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Abstract—The simulation of coupled electromagnetic-/thermal-
problems with high resolution requires efficient numerical
schemes. High performance computing languages like CUDA help
unlocking the massively parallel capabilities of graphics processor
units (GPUs) to accelerate calculations. This reduces the time
needed to solve real world problems. In this paper, the speed-
up is discussed, which is obtained by using the new CUDA 5.0
on recent hardware and multiple GPUs for coupled time domain
simulations with finite difference schemes. In particular, extended
memory allows solving larger problems with more degrees of
freedom without swapping. Promising speedups can be obtained
by splitting up the workload and using more sophisticated GPU-
optimized preconditioners to reduce the number iteration steps.

Index Terms—SpMV, Conjugate Gradients, GPU, CUDA, Bio-
heat, Finite Differences, Multiphysics

I. Introduction

Many simulators for problems in the high-frequency-
domain, use finite difference schemes for coupled multi-
physics problems. This applies for example to electromagnetic
field dosimetry problems and in particular to the coupled
numerical simulation of the specific absorption rate (SAR)
and to the thermal field distribution in biological materials
and structures, [1], [2], [3]. As an example for a numerical
application the SAR distributions in the head of the model
’Duke’ is considered in this paper.

The calculation of the thermal distribution requires the
solution of an implicit problem: for the calculation of the static
temperature distribution a conjugate gradient (CG) solver can
be used to solve the following linear Poisson-type system of
equations based on the Pennes-equation [4].

In this paper we discuss the numerical techniques that are
necessary to unlock the new CUDA 5.0 features for coupled
electromagnetic/thermal field simulations.

A. State of the Art

In recent years the usage of GPUs (graphics processor units)
was proposed to accelerate the solution process of large scale
electromagnetic problems including high-resolution models. In
particular the numerical linear algebra was addressed in the
electromagnetic community, e.g. [5].

Fig. 1 Two step halo exchange, using the full PCIe’s bandwidth, see [8]

In October 2012 Nvidia introduced CUDA 5.0. It comes
with several new features, e.g., with ’dynamic parallism’ GPU
kernels can dynamically create new kernels. Now, recursive
sequences can be woven into existing codes. To make use
of this promising feature very recent GPUs of the Kepler
architecture, available since November 2012, are required.

Already in CUDA 4.0 some features for multi-GPU pro-
gramming where introduced. With the Unified Address Space
(UAS) the host and all attached GPUs share a common address
space. Since CUDA 4.0 managing multiple GPUs from a
single host is possible, while in earlier versions each GPU
needed its own host thread. This was commonly realized using
Message Passing Interface (MPI). Interactions between two
GPUs can be performed with UAS Peer-To-Peer via PCIe
without involving the host. For CUDA 4.0 features GPUs of
the Fermi or Kepler architecture are required.

II. Accelerating Electromagnetic-thermal Simulations

In [3] an implementation of a multi-physical code for
electromagnetic and thermal field simulation was introduced.
Recently [6] a GPU acceleration was presented. It uses the
DIA-Format to take advantage of the shape of banded matrices
caused by finite differences. Because of this storage format a
significant speed-up can be realized compared to other storage
formats like CRS. The reason for this is the more efficient
storage order resulting in higher bandwidth utilizations.

For solving the linear systems with CG all matrices and
vectors have to be uploaded to the GPU. Therefore, the global
memory of the GPU limits the size of the problems that can be



TABLE 1
Speedup for CG in double precision, see Fig. 2, and bandwidth-relation for
different devices compared to an i7 2.80 GHz CPU, benchmarked with [6]

Device Speedup Bandwidth [GB/s] Bandwidth×t [GB]
Geforce GT540M 1.52 28.8 3846
Geforce GT640 1.47 28.5 3934
Geforce GTX285 8.40 159 3846
Tesla K20 12.08 209 3513

efficiently solved using the GPU. To overcome this impasse, a
multi-GPU solver can be implemented. At best a speedup in
the order of the number of GPUs used can be expected.

Communication between the GPUs normally reduces the
speedup of an implementation. Two kinds of communication
operations have to be looked at when parallelizing CG [7]
• For dot products the results of all GPUs are added up and

broadcasted. This reduction can be done on the CPU and
the result is uploaded to the GPUs. As modern GPUs of
the Fermi- or Kepler-Architecture have at least one copy
and one separate calculation engine, the time needed for
CPU calculation and upload can be hidden behind other
parallel calculations done on the GPUs.

• For sparse matrix-vector multiplications some elements of
vectors residing on other GPUs are needed. These halo-
elements [8] have to be exchanged among the GPUs. The
UAS allows an efficient peer-to-peer exchange. First the
last elements of each vector part are exchanged with their
right neighbor, then the first ones with the left neighbor.
This unlocks the full-duplex transfer rate of each PCIe bus
of every GPU and requires only few additionally memory,
see Fig. 1.

Tab. 1 shows the speed-up that can be obtained by CUDA
5.0 on current hardware including the new Tesla K20. Even
though it’s GK110 GPU is optimized for double-precision
calculations, bandwidth remains the limiting factor for sparse
matrix vector dominating the behavior of CG Solvers.

III. Advanced Preconditioners

Preconditioners are commonly used to improve convergence
and reduce the required number of iteration steps of the
CG method. In [6] a Jacobi preconditioner was employed. It
combines the advantages of being easy to implement, showing
good results in finite difference calculations and being opti-
mally useable for the DIA-storage format and GPU memory
access patterns. Fig. 2 shows the convergence of PCG versus
CG using our multi-GPU in-house code.

Nevertheless, more sophisticated preconditioners promise
higher speedups. Even if the single iteration step may take
longer, the overall time could be compensated by step re-
duction. Especially at larger problems that can be solved on
multiple GPUs, reducing the number of CG iteration steps may
become a key feature.

With CUDA 5.0 (Kepler architecture) Nvidia introduced
dynamic parallelism. This allows kernels to spawn new kernels
and thus recursive code sequences on the GPU. With this
feature a new closer look at multi-grid algorithms either as
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Fig. 2 Relative CG residuum in the simulation of the temperature distribution
in a human head, see [6]; computed by the in-house multi-GPU code [3],
performed sequentially on a Tesla K20.

stand alone solvers or as preconditioners must be taken. The
possibilities of CUDA 5.0 for more complex preconditioners,
e.g. [9], will be presented in the full paper.

IV. Summary and Outlook

We have discussed recent advances in the development of
a coupled electromagnetic/thermal FORTRAN code towards
a CUDA 5.0 based code. In this digest we focused on the
challenges of the multi-GPU implementation, e.g., regarding
calculation time, maximum problem size and memory usage.
We have shown first results of computations on Nvidia’s new
Tesla K20. In the full paper, different types of GPU-optimized
preconditioners will be discussed regarding iteration steps,
calculation time and bandwidth utilization.
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