
Abstract—Both conformal mapping via Schwarz-Christoffel 

formulas and finite element methods can provide accurate results 

in analyzing two-dimensional fields.  In presence of curved 

boundaries with small radius of curvature, the first are normally 

constrained to introduce piecewise straight lines, and the original 

contribution of this work consists of presenting a reliable 

procedure to smooth several sharp vertices of a polygonal 

boundary by the formula for rounded corners, and comparing the 

results with those obtained by replacing sharp corners with 

piecewise straight lines. Differences are perceived only in close 

proximity, and this quantitatively explains the similar results 

obtained from maps and from finite element methods, and 

provides reliable assessment of the obtainable results.  

Index Terms—Static fields, conformal mapping, Schwarz- 

Christoffel, finite elements. 

I. INTRODUCTION 

Availability of powerful numerical tools to analyze field 

problems by means of both conformal mapping via inversion 

of the Schwarz-Christoffel (SC) formula [1]-[2]-[3] and finite 

element methods (FEM) [4]-[5]-[6] suggests to discuss an old 

problem from a methodological point of view, and to make 

useful comparisons. In fact, the standard SC formula allows us 

to perform very accurate calculation on domains limited by 

polygonal boundaries, but this can introduce singularity 

artifacts where a curved boundary would be more appropriate. 

Conversely, FEMs require refined discretization procedures 

[4]-[5] of the analyzed domain, even if very good non-local 

results are often observed. For instance, a comparison of 

results was reported in [7], while an initial discussion on local 

field results has been presented in [8].  The SC formula for 

rounded corners was early studied [9] but applications have 

been seldom described, and normally to bend a sole large 

portion of the boundary, as in [10] (a more general overview 

of methods is available in [1], chapter 4).  In this paper, 

starting from the same geometry considered in [8], an efficient 

procedure is described to smooth several sharp vertices to 

small quasi-circular arcs using the SC formula for rounded 

corners, and the results are discussed. Comparison is made 

with results obtained using piecewise straight lines instead of 

continuous curves, what limits strong field singularities but 

introduces more singular vertices, and very small differences 

are observed.  This agrees with known FEM performances. 

II. MAPPING PROCEDURE 

The case study geometry is shown in Fig. 1, representing a 

suitable part of a transformer section, with the low-voltage 

winding at the lower side, and high-voltage winding and 

guard-ring in the middle of the figure. In this simulation 

(applied voltage test) the electrodes are the grounded low- 

voltage winding and the high-voltage winding connected to the 

guard-ring; magnetic walls are indicated by dashed lines. A cut 

was provided between high-voltage winding and guard-ring by 

means of a pair of conductive sides, to define a simply-

connected domain. This was first mapped to the upper SC half 

plane via numerical inversion of the standard formula (SCNI), 

and then into a rectangle, were fields and equipotential lines 

are immediately obtained. From the rectangle, boundary and 

equipotential lines can be easily remapped to the original or to 

any new smoothed geometry (plane w), saving global 

characteristics as capacitances. The original geometry was 

derived from data used in [8] for FEM analysis, where small 

circular arcs replaced some right angles, with a radius of 0.004 

in the figure units. When rounded corners or short piecewise 

straight lines of similar lengths are introduced in the geometry, 

differences among initial and final geometries are hardly 

perceived at the scale of Fig. 1. So, only local effects will be 

drawn in the following. 

 
Fig. 1.  The analyzed geometry, showing electrodes and equipotential lines. 

  

During SCNI, crowding effects [1] are counteracted by 

using compound Gauss-Jacoby integration formulas [1][2], 

and it can be useful to start with a cut of small but finite 

thickness in the original geometry to avoid double-mapped 

regions in the final.  The equipotential lines are traced from 

one magnetic walls in the figure to the other by means of a 

predictor-corrector procedure, and they look near coincident 

or superimposed in some regions, were potentials differ for a 

2% of the applied voltage V. The SC formula for rounded 

corners leads to quasi circular arcs, whose shape is near 

independent of the distant vertices of the boundary if the 
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radius is relatively small. This allows us to easily control the 

arc dimensions, and to avoid  optimization procedures if 

auxiliary vertices are provided at their ends.  Accurate 

integration of the SC formula along the real axis of the 

intermediate plane easily leads to accurate positioning of all 

vertices and arcs. The quality can be appreciated in Fig. 2, left 

and rigth parts, which refer to the vertex regions indicated by 

A and E in Fig. 1. Four vertices were smoothed to rounded 

corners, near letters A, B, C and D.  The agreement of the 

behavior of the equipotentials lines with the shape of the 

neighboring boundary appears both at the left hand, near a 

smoothed vertex, and at the right, near a  non smoothed vertex. 

 
Fig. 2.  Details of boudaries and equipotential lines in regions correspondig to 

those indicated by A (left hand) and E (right hand) in  Fig. 1.  

III. RESULTS AND DISCUSSION 

Being any transformation conformal, electric fields are 

easily computed at any point both from distances between 

equipotential lines in close proximity, and from the ratio 

between a small step along one of them and the step along the 

corresponding path in the intermediate rectangle. The 

numerical derivatives are in good agreement, but the second 

methods leads perhaps to more simple calculations. About 

4000 steps are used, staring from the vertical magnetic wall. 

            
Fig. 3. Electric field amplitudes along two equipotential lines for three 

geometries: the original (dashed line), that with four rounded corners, and a 

third, were the rounded corners are replaced by piecewise straight lines (dots). 

 

The fields along the two equipotential lines in Fig. 1 at 

0.5% V from the boundary are show in Fig. 3, for three 

geometries: the original one with piecewise straight lines 

inscribed in circular arcs at A and B, that in Fig. 2 with four 

rounded corners, and a new geometry introduced for 

comparison. This is similar to the original geometry, but the 

piecewise straight lines are now matched to the rounded 

corners of the second one.  Although this replacement, of 

course, is not leading to a conformal mapping (the geometrical 

capacitance varied for about 0.05%), the local field behaviors 

are suitable to evaluate the influence of the small vertex 

singularities introduced by the piecewise smoothing.  Two sets 

of three equipotential lines are easily recognized for the two 

potentials, and a large difference in noted only for the sharp 

corner in the original geometry near letter C in Fig. 1, rounded 

or piecewise smoothed in the others. On the contrary, modest 

differences are perceptible between the fields near the rounded 

or polygonal boundaries, quantitatively measuring the very 

local effect of the weak singularities introduced by the five 

corners of about 18 degrees along the piecewise smoothing.  

At the same time, this behavior is shown similar to that 

normally obtained from FEM codes, which neglect very small 

scale details of boundaries. Moreover, well known rules of 

thumb are supported, which recommend evaluating fields at 

some percent voltage distance from sharp edges in boundaries: 

in fact, more close evaluations are very seldom required. 

Further analysis in region A about the rounded corner and 

about its piecewise version with five vertices shows in Fig. 4 

very similar behaviors for equipotential lines at no less than 

some 5% of the applied voltage V, with small differences in 

the positions of the local maxima of the field amplitude. So, a 

conclusion can be drawn as follows: smoothing is often 

necessary; piecewise smoothing will be normally sufficient.  

                      
Fig. 4. Equipotential lines and maximum field points for a rounded (solid 

lines and circle) and a piecewise smooth corner (dashed lines and cross). 
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