
Abstract—In Electrical Impedance Tomography (EIT), one of 
the major problems of complex geometry shape is its high 
demand in computation capability power and memory. To 
calculate the forward problem accurately, a Generalized Finite 
Element Method (GFEM) is proposed to overcome the limitation. 
Then a smaller number of nodes and elements compared with 
conventional FEM are needed with a numerical computation 
model of EIT. In the forward solution, it is capable of achieving 
better accuracy with less computational time and memory. Our 
results demonstrate the efficiency of the GFEM in EIT 
simulation. 

Index Terms—Bioimpedance, Biomedical computing, 
Biomedical engineering, Biomedical image processing, 
Computational electromagnetics 

I. INTRODUCTION 
Electrical impedance tomography uses electrodes placed 

on the surface to make measurements and then an image of the 
electrical conductivity distribution within the body is 
reconstructed with an algorithm. It is a relatively novel low-
cost non-invasive imaging technique that has evolved over the 
past 30 years [1]. And EIT shows the potential to be of great 
value in clinical diagnosis [2-3].  

In electrical impedance tomography (EIT), a numerical 
computation forward problem model with capable of 
predicting the voltages on surface electrodes for a given 
conductivity distribution is indispensable for image 
reconstruction.  

The EIT forward problem model is normally based on the 
conventional Finite Element Method (FEM) [4-6]. One of the 
major problems of complex geometry shape or 3-D EIT is its 
high demand in computation capability power and memory. 
High precision both in numerical computation and in data 
acquisition is required for obtaining the reconstruction images 
for a small anomaly in the computing domain. In our work we 
address the problem of calculating the forward problem 
accurately. The Generalized Finite Element Method (GFEM) 
[7-8] is proposed to overcome this limitation. With the 
introduction of GFEM, a smaller number of nodes and 
elements compared with conventional FEM are needed. In the 
forward solution with GFEM, it is capable of achieving better 
accuracy with less computational time and memory. The 
results demonstrate the efficiency of the GFEM in EIT 
simulation. 

II. FORMULATION 

A. Generalized Finite Element Method 
The Generalized Finite Element Method comes from 

manifold method [7] is a developed general method to analyze 
material response to external and internal changes in stress 
originally. And now it has been used in electromagnetic fields 
computation and analysis [8]. In this method, the node is 
generalized, and so it can have more than two or three 
generalized degrees of freedom, and those degrees of freedom 
are not required to have their own definite physical meaning 
necessarily. At each generalized node, we can take a 
polynomial to define a generalized type of nodal interpolation 
function.  

Let us suppose hS  is the conventional FEM space, and a 

Lagrange interpolation function [ ]Tn21 ϕϕϕ K  is used, then 

the field variable hU  can be written as a summation with the 

conventional as the FEM: ∑
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, where the iur (i= 

1,2,…,N) is the vector of degrees of freedom [ ]Tii vu  on the 
thi  node which represents the potential variation on the node. 

When the node is generalized it can have more degrees of 
freedom, and those degrees of freedom  
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Then we get the following equation from the above,  
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where iN
r

 is the matrix of interpolation function which has its 

origin iϕ
r

, and iD
r

 is the generalized vector of degrees of 

freedom with the form of [ ]Tmiiii
i ddd 2,2,1, K
r
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When a zero-order generalized nodal interpolation 
function is used, the GFEM would be reduced to conventional 
FEM.  

B. EIT Forward Problem 
A low-frequency EIT forward problem is modeled as (1). 

The electric field is conservative, and the conduction currents 
dominant with respect to their displacement counterparts lead 
to the equation: 

01 =∇⋅∇ − φρ       in hS                   (1) 
where ∇ is the gradient operator, φ∇  represents the static 
electric field; ρ  is the resistivity of the body; φ  is the 

electric potential; hS  represents the body to be imaged. 
Electrodes are modeled with boundary conditions as the 
complete electrode model [9]. For one triangular element, 
there are three generalized nodes. Then the field variable hU  

in the element could be written as ∑
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For EIT problem, it is not easy to derive the governing 

equations of the GFEM with variational principles. So the 
method of weighted residuals is implemented to derive the 
governing equations.  

III. SIMULATION RESULTS 
To validate the results of GFEM, a circle forward model 

with 16 electrodes is used. The circle has radius of 1 m. The 
16 electrodes attached on its boundary as shown in Fig. 1. In 
Fig. 1. (a) is the zero-order GFEM model and it is a 
conventional FEM model which contains 545 nodes, 1024 
elements; and (b) is the one-order and two-order GFEM 
model which contains 313 generalized nodes, 576 elements.  

The contact impedances of the electrodes is set to 0.01 
2m⋅Ω  in the simulation. The adjacent pair current patterns 

and adjacent measurements protocols are used. In Fig. 1 (c), 
the normalized voltage values of electrodes results are shown. 
Dividing the maximum value of voltage on electrode in the 
same current pattern, the normalized voltage is obtained. 
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Fig. 1. Two GFEM models  
(a). zero-order GFEM, (b) one/two-order GFEM model, (c)Normalized 

voltage values of electrodes measurement 
The simulation result is obtained using the zero, one and 

two-order GFEM basis functions. The results show that the 
three orders agree very well with the L-2 norm error less than 

0.0026. The computed voltage with different orders GFEM 
for one pattern is demonstrated in Fig. 2. 
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(a)                                   (b)                                (c) 

Fig. 2. Computed voltage with different orders GFEM for one current pattern  
(a)zero-order, (b) one-order, (c) two order 

We could obtain the same even better computed results 
with less nodes when one-order or two-order GFEM is used.  

IV. CONCLUSION 
The generalized finite element method has been developed 

and validated for the EIT forward model. Numerical 
simulation results show that GFEM is able to achieve the 
same or better accuracy with conventional FEM. In summary, 
we have shown the GFEM is an efficient and promising 
method in forward problem solution for electrical impedance 
tomography. 
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