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Abstract—A conductor moving in a stationary magnetic field
often rises cruical issues in the courses on electromagnetics
for electrical engineering students. The correct use of Fara-
day’s induction law can sometimes be harder than one would
think for the first sight. In this paper, we revisit a well-
known demonstration example of eddy-currents by means of
numerical field computation: the case of a small magnet falling
within a copper tube is dealt with by approximate and proper
electromagnetic models. The approximate solutions are usually
of satisfying accuracy, but they hide some parts of the physics
behind the phenomenon. At the university courses, however,the
deep understanding of the electromagnetics must proceed the use
of practical simplifications, even when using up-to-date numerical
field computation softwares.

Index Terms—education, Faraday’s law, moving conductor,
finite element method

I. Introduction

One of the most impressive demonstrations of the eddy-
currents is the damped fall of a strong magnet in a non-
ferromagnetic conducting tube. The magnet’s terminal velocity
is much smaller than in free-space due to the braking effect
of the induced eddy-currents in the tube wall. This experi-
ment is perfect for focusing the young students’ interest on
electromagnetic phenomena and also for teaching quantitaive
modeling for graduate students.

Several analytical (e.g., [1], [2], [3]) and experimental
(e.g., [4]) approaches have recently been published on this
demonstration example. A common concern about these works
is that they consider the magnetic field generated by the falling
magnet only and neglect the magnetic field risen due to the
currents induced in the tube wall. This second part of the
induction is much smaller than the first one in the standard
configurations at relatively “small” falling velocities. However,
in the viewpoint of the education, the proper modeling (even
if it is complicated), might sometimes be more useful than a
good approximation (which can easily be misunderstood by
the students). A common mistake in students’ thinking is to
force sequential rules even if there is no distinguished order of
the phenomena but they all interact with each other. A such
example with a “reaction-effect” might help the students to
see the electromagnetics clearer.

The assumption of “small” speed –as a condition for the
neglection of the self-inductance phenomenon– also occurs

This work was supported by the Hungarian Scientific ResearchFund under
grant K-105996 “Surrogate modeling for the solution of electromagnetic
inverse problems” and by the grant TÁMOP-4.2.2.B-10/1/KMR-2010-0009.
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Figure 1: The axisymmetric configuration in a cylindrical
coordintate system (z, ρ, ϕ). A magnetic dipole (with az-
directed momentm) is at rest on the axis of an infinite-long
tube which moves with a velocityv.

in other common examples (not considered herein), like the
infinite metal plate moving below a strong magnet ([5], [6]).
Within the frame of the Lorentz Force Velocimetry ([7]), again
similar approximations are usually made.

In this paper, we present the EM modeling of the magnet
falling in a conductive tube and study the relation between
the results obtained by the approximate and the proper model,
with respect to the velocity of the fall. The proper model re-
quires numerical field computation; we use the Finite Element
Method.

II. The studied configuration and the EM models

The copper tube (conductivity:σ = 57 MS/m) is vertical,
the inner and outer radii area = 7.85 mm andb = 9.75 mm,
respectively. The tube is very long and the steady state is
studied: the magnet falls with its terminal velocityv (the sum
of all forces acting on the magnet –gravity, drag and magnetic–
gives zero) andv is assumed to be known. The magnet is
assumed to be small, i.e., it is modeled by a magnetic dipole
with a vertical moment, moving on the axis of the tube (z),
see Fig. 1.

In the model, the magnet is fixed to the center of the
cylindrical coordinate system and the tube is assumed to
move to the+z direction with a velocityv. Let us denote the
magnetic induction of the dipole byB0 (expression is avaliable
in textbooks).

Our goal is to obtain the current density within the tube
wall. The constitutive relation in the moving conductor1:

J = σE′ = σ(E + v × B), (1)

1For the sake of rigour:v has to be much smaller than the speed of light.
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whereE′ is the electric field in the moving media andE is
the electric field in the rest-frame. The latter is zero, since no
static charge is experienced anywhere in the conductor, dueto
the axial symmetry of the configuration.J has an azimuthal
component only. Equation (1) includesB, which is the total
magnetic induction in the rest-frame.

Let us assumeB = B0, i.e., neglect the induction associated
with the current in the tube wall. In so doing, the current
density –now denoted byJ0– can easily be expressed:

J0 = σv × B0 = êϕσvB0,ρ, (2)

where B0,ρ is the radial component of the induction of the
dipole.

The total induction is, however,B = B0 +Be. Let us derive
the so far neglected second term from a vector potential:Be =

∇ × A. This potential satisfies the Laplace-Poisson equation
(with the gauge∇ · A = 0):

∆A = −µ0J. (3)

Rewriting this into (1), we get:

−∆A − µ0σv × (∇ × A) = µ0σ(v × B0). (4)

SinceBe has axial (z) and radial (ρ) components only,A is
azimuthal:A = A(z, ρ)êϕ. The differential equation forA is:

−
∂

∂ρ

(

ρ
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∂ρ

)
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∂

∂z
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+
A
ρ
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∂A
∂z
= ρµ0σvB0,ρ. (5)

In the air-filled regions inside and outside the tube,σ = 0 is
set in (5).A is continuous at the boundaries and vanishes at
infinity.

Equation (5) is solved by the Finite Element Method. In the
PDE-toolbox of MatlabR©, the elliptic equation scheme can be

used, but the term containing
∂A
∂z

is put to the right side and

the equation is solved as a nonlinear one.
OnceA is obtained, the current density is given by (3).

III. Results

The preliminary numerical studies justify the expectations:
the discrepancy between the results of the approximate and
the proper model gets larger as the velocity increases. For the
configuration described in the previous section, the current
densities are plotted for two velocities in Fig. 2. Considering
that the typical velocities in such experiments are smaller
than 2 m/s, even the approximate model provides satisfying
results. However, one has to know the limitations of the
approximation. At v = 10 m/s, a significant difference is
experienced between the results. The current distributionis
not symmetric to the origin, in contrast with the predictionof
the approximate model.

IV. Conclusion

A numerical simulation of the eddy-current distribution due
to a moving magnet within a conducting tube wall is presented.
The proper model takes into account not only the magnetic
field of the magnet but the field risen by the induced current
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Figure 2: Normalised current densities on the inner wall of the
tube at two different velocities.

as well. So far a known velocity has been assumed. Asv
occurs in the coefficients of the partial differential equation,
this method cannot be used for the determination ofv directly.
In the full version of the paper, we present an iterative scheme
for the computation ofv, when the magnetic moment and the
weight of the small magnet is known.
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