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Abstract—Can the voltage at the terminal of a moving con-
ductive loop always be calculated with the Faraday law in
global form, U = −dΦ/dt? A WWW search on "Faraday
Paradoxes" reveals that this seemingly simple question has lead
to confusions in a class of induction problems where slip-rings
are present. The Faraday law has been said to be applicable
only when the conductive loop’s "material identity is preserved
by its movement". Even though the answers found by such
arguments are by and large correct, many statements found in
the literature are ambiguous and misleading. Basing ourselves on
the universality of the Faraday law in connection with Ohm’s law
for moving media, we hope to contribute to the explanation of
Faraday Paradoxes in a straightforward and insightful manner.

Index Terms—Electrical engineering education, Physics educa-
tion

I. INTRODUCTION

The Faraday law in global form, U = −dΦ
dt , is generally

used to calculate induction phenomena, where Φ is the mag-
netic flux through a surface A , and U is the voltage induced
along its boundary ∂A . Consider the conductor loop shown in
Fig. 1 (right) which coincides with ∂A and has its connection
terminal in P ∈ ∂A . The terminal voltage is often stated to be
U12 = −d Φ

dt , provided the loop resistance is sufficiently small
as compared to the voltmeter input resistance, and the resulting
circuit diagram is drawn in the load convention. In case of
a moving loop in an external magnetic field, the convective
derivative [1] must be employed to compute d Φ

dt , that is,

−d Φ

dt
= − d

dt

∫
A

~B · d~a

= −
∫

A

∂

∂t
~B · d~a+

∫
∂A

(
~vp × ~B

)
· d~r,

where ~vp denotes the velocity of the integration path, i.e., of
the rim of the surface ∂A . The two factors on the right-hand
side are called transformer EMF (Electro-Motive Force) and
generator EMF, respectively.
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Fig. 1. Abstract setting of the problem. The surface A is the gray shaded
surface with boundary ∂A . A voltmeter is connected at the terminal of a
conductive loop, coinciding with the surface boundary.

Some textbooks issue a warning on the above statements:
they may hold only when the material identity of the loop is

guaranteed [2]. In Feynman [3] we read: When the material
in a circuit is changing we must return to the basic laws. The
correct physics is always given by the two basic laws

~F = Q( ~E + ~v × ~B), curl ~E = − ∂

∂t
~B .

But does this imply that the global Faraday law is less general
and yields wrong results in some circumstances? To answer
this question, let us first consider the following experiments:

1) The strechted-wire magnetic measurement [4] is based
on a conductive wire (tensioned with negligible sag)
displaced in the aperture of a magnet, which is free of
any conducting or permeable material; see Fig. 2 (left).
A conceptually easy situation is given when any sliding
contact, connector, voltmeter, or auxiliary wire is in the
field-free region. Then the induced voltage is propor-
tional to the field integral times the velocity and the
integrated voltage is proportional to the flux intercepted
by the surface spanned during the displacement.
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Fig. 2. Left: Stretched-wire measurement. The wire itself is insulated
with respect to the sliders. Right: An example from Feynman adapted to
our situation (conducting plate in static field). The sliders are moved on the
conducting plate from inside out. No voltage is induced.

2) An example due to Feynman [3] is slightly adjusted
to compare it with the setup for the stretched-wire
measurement. According to Fig. 2 (right), a conducting
plate is placed in the aperture of a C-shaped magnet. As
the sliding contacts are moved across the plate, there is
no EMF although we have a large change of flux through
the surface spanned by ∂A .

3) The homopolar generator [5] shown schematically in
Fig. 3 produces an EMF even though neither the in-
tegration path is moving, nor the field is changing.

4) When a coil is moved through the aperture of a C-shaped
magnet, see Fig. 4 (top), an EMF is induced similarly to
the case of the stretched-wire measurement above. In the
Hering experiment [6], as depicted in Fig. 4 (bottom),
the coil is replaced by a loop that consists of two flexible
leads with sliding contacts, no EMF is induced when the
contacts are pulled across the iron yoke, even though
there is a varying flux linkage in the loop.
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II. SYSTEMATIC RESOLUTION OF THE PARADOXES

Although the above experiments are all related to induction
problems, only the stretched-wire measurement and the coil
in the first part of the Hering experiment are covered by
the simple application of U12 = −d Φ

dt . Should we therefore
deduce that the global Faraday law is not universal? The
global Faraday law U(∂A ) = −dΦ

dt is related to the Maxwell
equations ~E = −gradϕ− ∂ ~A

∂t via Φ =
∫

A
~B ·d~a =

∫
∂A

~A ·d~r
and the convective derivative. Global and local descriptions are
equally valid. However, the above formula U12 = −dΦ

dt is not
a direct consequence of the global Faraday law. As it relates
U12 to U(∂A ), it makes use of the constitutive relation, i.e.,
Ohm’s law and the resistive voltage-divider rule. This may
appear to be insignificant at first glance, but it holds the key
to all of the above apparent paradoxes. Recall that Ohm’s law
in moving media reads

ρ ~J = ~E + ~vm × ~B,

where ρ is the resistivity and ~vm the velocity of the conductive
medium. This version of Ohm’s law is a direct consequence
of the Lorentz force ~F = Q( ~E + ~vm × B), where Q is the
charge-carrier in the conductor moving through a field ( ~E, ~B).
Writing ~vp for the velocity field of the integration path ∂A ,
we follow Feynman’s suggestion by applying Ohm’s law and
curl ~E = − ∂

∂t
~B to the convective derivative; the terminal

voltage is obtained from the voltage divider rule,

−dΦ

dt
= U(∂A )

= −
∫

A

∂

∂t
~B · d~a+

∫
∂A

(
~vp × ~B

)
· d~r

=

∫
A

curl ~E · d~a+

∫
∂A

(
~vp × ~B

)
· d~r

=

∫
∂A

~E · d~r +

∫
∂A

(
~vp × ~B

)
· d~r

= U12 +

∫
∂A rP

ρ ~J · d~r +

∫
∂A

(
(~vp − ~vm)× ~B

)
· d~r.

For simplification, and without loss of generality, we set ρ = 0
on ∂A rP , that is, the path resistance is small compared to
the input resistance of the voltmeter. We find

U12 = −dΦ

dt
−
∫
∂A

(
(~vp − ~vm)× ~B

)
· d~r

and, alternatively,

U12 = −
∫

A

∂

∂t
~B · d~a+

∫
∂A

(
~vm × ~B

)
· d~r.
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Fig. 3. Homopolar generator. Left: Nonuniform field on the disc as in
Faraday’s original experiment. Right: Rotating disc in uniform magnetic field.
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Fig. 4. Illustration of the Hering experiment.

All of the above seemingly paradoxical experiments can now
be resolved by this equation, which differs from the statement
in the introduction only by the distinction between path
velocity and material velocity:

1) A stretched-wire measurement of a magnet with a pole
length L and a uniform pole field B0 is described by
~vp = ~vm = ~v and ∂

∂t
~B = 0. The terminal voltage is

U12 =
∫
∂A

(
~v × ~B

)
· d~r = vLB0.

2) For the Feynman-plate experiment, ~vm = 0 and
∂
∂t
~B = 0. Therefore U12 = 0.

3) The case of the homopolar generator, Fig. 3 (right), with
a disc of radius r0 rotating at an angular velocity ω,
vm = r ω, in a homogeneous field B0, yields ~vp = 0,
∂
∂t
~B = 0, and U12 =

∫
∂A

(
~vm × ~B

)
· d~r = 1

2ωr
2
0B0.

4) For Hering’s experiment, Fig. 4 (bottom), we find
~vm = 0, ∂

∂t
~B = 0, and therefore U12 = 0.

III. CONCLUSION

The global Faraday law for moving paths with velocity ~vp

are valid under all technical circumstances. Misinterpretations
of the law may result from the assumption that the terminal
voltage U12 can be determined by the global Faraday law
alone. The voltage divider rule naturally introduces Ohm’s law
for conductive media moving with material velocity ~vm. The
naive application of U12 = −d Φ

dt yields correct results only
if ~vp = ~vm, that is, the boundary ∂A in the Faraday law
coincides with a thin conducting wire. It should be noted that
the velocities ~vp and ~vm, as well as the fields ~E, ~B, and ~J
are expressed with respect to one and the same observer. In
the full paper we plan to elaborate on the notion of Eulerian
and Lagrangian observers, and the independence of the above
findings of a specific viewpoint.
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