
Abstract— Dielectric design of gas insulated switchgears (GIS) 
for modern AC ultra-high voltage power transmission lines is 
significantly influenced by undesired very fast electromagnetic 
transients (VFT) initiated by disconnector switching operations. 
This paper presents in detail a novel method for damping of 
VFTs by means of high frequency resonators and a numerical 
method for the resonator’s eigenvalue analysis. The efficiency 
and accuracy of this simulation method for extraction of the 
resonant frequencies is validated by low-voltage AC 
measurements. The VFT damping efficiency of the developed 
resonator is verified by high-voltage VFT measurements. 

Index Terms — Very fast electromagnetic transients, 
electromagnetic modeling, numerical simulation, and cavity 
resonators. 

I. INTRODUCTION 
The recent pronounced global tendency for reducing power 

transmission losses driven by dramatically increasing power 
demand resulted in development of new ultra-high voltage 
(UHV) AC power transmission systems, such as for example 
the new 1’100kV Jindognan – Nanyang - Jingmen line in 
China. Core components of the UHV AC systems are GIS that 
consist of HV switching devices (circuit breakers, 
disconnectors, earthing switches), various connecting pieces, 
and interface components (bushings) to overhead lines, 
transformers, etc. The GIS are installed in the nodes of HV 
networks to perform switching operations necessary for power 
system control and maintenance [1], [2]. 

As explained in detail in [1] and [2] the VFTs in GIS are 
initiated mainly by disconnector switching operation, they 
propagate as non-harmonic electromagnetic waves in the 
encapsulated GIS SF6 volume, and they cause a very 
complicated transient voltage distribution with the peak values 
reaching theoretically 2.4 times a higher value than the 
nominal voltage [1]. As elaborated in [2], in the case of the 
UHV GIS the VFT overvoltages surpass the standardized 
lightning impulse withstand voltage level (LIWV) [3] and thus 
became the decisive factor for the dielectric design. This 
means that the size of the pressurized volume, i.e. the size of 
the complete UHV GIS installations is basically determined 
by the peak values of the VFTs and their efficient damping 
could lead to significant size decrease and radical cost 
reductions of the adjacent equipment (transformers). 

The idea of damping the VFTs by means of HF cavity 
resonators, the initial resonator topology, and its first 
experimental verification was reported in a previous 
publication [4]. In the same work was also presented a 
numerical eigenvalue analysis of the resonator based on the 
time-domain vector Finite Element Method (FEM) [5]. The 
damping efficiency of the resonator was verified by 
measurements and the VFTs amplitude reduction of 20-30% 

was observed and reported [4]. 
In this paper the authors present the following: (a) a new 

and simpler eigenvalue analysis of the resonator based on the 
frequency-domain vector FEM [5]; (b) the results verification 
of the numerical eigenvalue analysis by low-voltage resonance 
measurements; (c) the VFT damping efficiency verification of 
the resonator by high voltage VFT measurements. 

II. METHOD DESCRIPTION AND NUMERICAL RESULTS 
The topology of the cavity resonator according to our 

previous publication [4] is presented in Figure 1. The 
resonator consists of an elongated cavity with a narrow 
opening at its left end. As shown later in the paper, the cavity 
defines the inductance of the resonator and the gap its 
capacitance. The inductance and capacitance of the resonator 
determine its resonant frequency. Thus it is possible, by 
changing the resonator gap length and thickness and by 
changing the volume of the resonator cavity, to adjust its 
resonance frequency to the main component of the GIS VFTs. 
Precisely this was done in this work. 

 
Fig. 1. The topology of the cavity resonator for damping of VFTs in GIS 
is depicted [4].     

Theoretically speaking, Maxwell equations could be 
discretized in the resonator and surrounding GIS volume 
without any field sources by using the vector FEM. From the 
obtained homogenous linear system of equations we could 
extract theoretically the eigenvalues, i.e. the resonant 
frequencies and thus solve the problem [5]. However, in this 
case this is not possible for the following reasons: (a) the 
resonator is open and the corresponding leakage power makes 
the eigenvalues to be complex numbers; (b) it is not possible 
to calculate all the eigenvalues of the large FEM equation 
system but only a few eigenvalues around a certain predefined 
value that is in this case not known; (c) without a good initial 
guess the eigenvalue search would take inacceptable long 
CPU-time. These numerical effects has been already 
theoretically investigated and reported in detail in [6]. 

Therefore we suggest here a much simpler procedure. The 
model shown in Figure 1 at the left hand side is connected to a 
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harmonic voltage source and on the right hand side terminated 
with the matching wave impedance in order to avoid 
reflections at the right termination boundary. At any given 
frequency the following boundary value problem (BVP) is 
solved by means of the vector FEM implemented in the 
software Comsol [7]:  
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where 𝐸�⃗  is the electric field, 𝜔 is the angular source 
frequency, Ω is the pressurized SF6 volume in and around the 
resonator, 𝜕𝑃𝐸𝐶Ω is the perfect electric conductor (PEC) 
boundary (all the metallic surfaces in the model), 𝜕𝑃𝑂𝑅𝑇Ω are 
the termination surfaces of the model with the known wave 
impedance 𝑍𝑆 = �𝜇 𝜀⁄ . 

Equation (3) defines the port, i.e. the surface over which the 
electric field of the source is known. This is the vertical model 
termination boundary on the left hand side of the model shown 
in Figure 1. Equation (4) defines the port with no source 
which is the boundary condition assigned to the vertical 
termination boundary on the right hand side of the model.     

The BVP (1-4) is not a classical eigenvalue problem as it 
contains a field source (𝐸𝑠����⃗  in Equation (3)). However it is still 
the core of the eigenvalue extraction method suggested in this 
paper that consists of the following steps: (a) definition of the 
frequency range of our interest; (b) definition of the desired 
accuracy of the extracted eigenvalues, i.e. definition of the 
frequency step; (c) solution of the BVP (1-4) for each 
frequency step of the chosen range; (d) evaluation of the 
voltage across the resonator gap; (e) detection of the resonant 
frequencies from the peaks of the voltage curve. 

This procedure was applied to two different resonators with 
the same topology shown in Figure 1 but with different cavity 
volumes. The obtained results are depicted in Figure 2.      

   

 
Fig. 2. The results of the resonator’s eigenvalue analysis by solving the 
BVP (1-4) in the form of the eigenfields (top) and the voltage across the 
resonator gap (bottom) are shown. 

 
Fig. 3. The results of the LV resonance measurements of the fabricated 
resonators by using the network analyzer Agilent E5061B are presented.  
 
In order to validate the simulation results the resonator with 

an adjustable cavity size was fabricated and its resonance 
curves were measured. These results are shown in Figure 3. It 
is evident from the comparison of Figures 2 and 3 that our 
method for eigenvalue analysis has a high level of accuracy 
as the disagreement of the measured and simulated resonant 
frequencies is less than 5%.  

The VFT damping efficiency of the resonator with the 
resonant frequency of 14.91MHz (the cavity 1) was also 
tested on the ABB 550kV GIS installation type ELK-3. These 
results are shown in Figure 4. The damping effect of the 
resonator is evident as the dominant VFT component with the 
frequency of around 15MHz is reduced by almost 60%. 

We are currently working on the full-Maxwell simulation 
of the entire installation ELK-3. These results together with 
the details of the resonator design will be presented at the 
conference and reported in the subsequent full paper.      

 

  
 
Fig. 4. The results of the VFT measurements on the ABB 550kV GIS 
installation type ELK-3 in time- (left) and frequency-domain (right) 
without and with the resonator are presented.  
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