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Abstract—We introduce a novel parallel multigrid algorithm,
referred to as FEM-MGGaBP, to accelerate the convergence of
the recently introduced Finite Element Gaussian Belief Prop-
agation solver. The FEM-MGGaBP algorithm processes the
FEM computation in a fully distributed and parallel manner,
element-by-element, demonstrating potential for high parallel
efficiency. Our results for both sequential as well as parallel
message scheduling versions of FEM-MGGaBP demonstrate high
convergence rates independent of the scale of discretization on
the finest mesh.

Index Terms—finite element methods, multigrid, Gaussian
belief propagation

I. Introduction
Gaussian Belief Propagation (GaBP) is a distributed mes-

sage passing algorithm originally used to compute marginal
distributions on graphical models [1]. GaBP was also intro-
duced as an algebraic solver for linear systems of equations
[2], [3] that demonstrated great potential for robust parallel
hardware implementations for Finite Element Methods (FEM)
[4], [5]. In addition, GaBP has been shown to outperform
classical iterative solvers such as Gauss-Seidel and Jacobi [2].
However such algorithms, which are derived based on pairwise
interconnect assumptions on the underlying graphical model,
suffer mostly from lack of convergence when diagonal dom-
inance properties are not met. To address these convergence
shortcomings and to improve the parallel efficiency of GaBP
the FEM-GaBP algorithm was recently introduced, which was
derived directly from a FEM variational formulation [6]. The
FEM-GaBP algorithm solves the FEM in parallel element-
by-element without the need to assemble a global sparse
matrix. FEM-GaBP can be shown empirically to reach high
parallel efficiency as the scale of the FEM problem increases
[6]. However, like most iterative solvers, the FEM-GaBP
convergence rate tends to stall when executed on fine meshes.

In this work we address this issue by introducing the
novel Multigrid FEM-GaBP (FEM-MGGaBP) algorithm. Our
empirical results of FEM-MGGaBP demonstrate that the new
algorithm achieves high performance, typical of multigrid,
which is independent of the scale of the finest grid. The FEM-
MGGaBP achieves this performance even when executed
using a new scheme of parallel message scheduling, promising
the same parallel efficiency of the original FEM-GaBP. To
our knowledge, this is the first multigrid formulation for
continuous domain GaBP algorithms that is derived directly
from a variational formulation of FEM.

II. Background

Multigrid accelerated solvers are among the fastest known
algorithms to obtain solutions to linear systems of equations
resulting from the FEM. The performance of multigrid can
in practice, be shown to be independent of the size of the
finest discretization of the domain [7]. Multigrid techniques
can vary widely by using different relaxation algorithms with
different smoothing properties, the approach of generating the
course grid operators AH , and the types of the interpolation
and restriction transfer operators.

To generate multiple scales of fine meshes, we employ
a hierarchical mesh refinement scheme based on element
splitting. As shown in Fig. 1(a) each triangle is split into
four geometrically similar child triangles by inserting nodes
at midpoints of the parent triangle edges. This hierarchical
scheme provides important advantages for element-by-element
parallel behaviour of FEM-GaBP. In addition by utilizing
semi-irregular mesh hierarchy, more adaptation to arbitrary
domains can be achieved than using regular meshes.

III. Multigrid FEM-GaBP Algorithm

The distinguishing feature of the FEM-GaBP algorithm
is solving the FEM in parallel, element-by-element, without
needing to assemble the large sparse operator A or performing
any global algebraic operations such as sparse matrix-vector
multiplications. These key advantages, which have important
implications for parallel hardware implementations, are main-
tained by the new multigrid formulation for FEM-GaBP. The
FEM-GaBP solves the FEM by passing locally computed
messages on a graphical model comprised of variable nodes
and factor nodes [6]. The variable nodes correspond to the
unknowns u, while the factor nodes correspond to probability
functionals representing each finite element. Unlike classical
relaxation algorithms such as Gauss-Seidel and Jacobi that are
used in typical multigrid schemes, the FEM-GaBP algorithm
operates by communicating local messages that have no direct
correspondence with the global transfer operations of multigrid
such as the residual and the correction.

To that end we define a quantity referred to as the factor
node belief ba, for each finite element a. The belief ba takes
the form of a multivariate Gaussian probability distribution
such as:

ba ∝ exp
[
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Figure 1. (a) Mesh refinement by splitting each triangle in mesh ΩH into four
geometrically similar sub-triangles to produce a finer mesh Ωh. (b) Course
irregular mesh. (c) Refined mesh by splitting.

where Wa is a small n×n dense matrix representing the inverse
covariance of the factor node belief, Ka is a dense vector of
dimension n, and ua is a vector of random unknowns linked
to the finite element a and having the same dimension. Matrix
Wa and vector Ka are updated each iteration by incoming
messages [6]. A key observation to state about the beliefs
is that at message convergence, the joint mean vector of
ba, given by ūa = W−1

a Ka, will be equal to the marginal
means of each of the random unknowns ua computed by
incorporating messages from all other connected factor nodes.
Using this observation, we can formulate a quantity referred
to as the belief residual. Using multigrids with hierarchical
refinement by splitting, the belief residuals of each group of
child triangles can be restricted into the parent triangle. This
is a recursive and a local operation for each set of child-
parent triangles. Also using the above belief definition, we can
formulate a relationship between the coarse grid correction and
the FEM-GaBP messages. Therefore, the resulting multigrid
FEM-MGGaBP algorithm becomes a fixed point algorithm.

IV. Results
We illustrate the performance of FEM-MGGaBP by solving

Laplace’s equation for the L-shaped portion of the square
coaxial-line problem shown in Fig. 1. The details of the
problem will be provided in the long paper. A hierarchy
of meshes is created by triangle splitting starting from an
irregular course mesh. A V-cycle multigrid scheme is used
where the parameters v1 and v2 are the number of pre-
smoothing and post-smoothing iterations respectively. Since
the FEM-MGGaBP operates on an element-by-element basis,
the computational load is increased by a factor of four for each
mesh refinement level. Table I shows a comparison of FEM-
MGGaBP compared to the original FEM-GaBP algorithm.
The solver is terminated when the relative error l2-norm is
dropped below 10−9. The FEM-MGGaBP results demonstrate
a multigrid acceleration performance that is independent of the
number of unknowns on the finest level. This performance is
illustrated by the amount of computational load reduction as
the number of levels is increased. The computational reduction
factors are computed by:

Computational reduction =
FEM-GaBP operations

FEM-MGGaBP operations
. (2)

Fig. 2 shows the convergence rates for different pre-
smoothing and post-smoothing settings as well as for dif-
ferent message scheduling schemes. The sequential message
schedule provides the fastest convergence rates; however, it
is not practical for parallel hardware implementations. It is

Table I
Computational reduction factors of the FEM-MGGaBP for the L-shaped

conductor problem using four levels of refinement

Refinement Num. Tri- FEM-GaBP FEM-MGGaBP Computational
Level variables angles relaxed v1 = 1, v2 = 1 reduction factors

1 825 1556 425 — —
2 3205 6224 931 12 39
3 12633 24896 3663 12 122
4 50161 99584 13109 12 416
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FEM-MGGaBP V-cycles

Sequential v1=2, v2=0

Sequential v1=1, v2=1

Sequential v1=2, v2=2

Parallel v1=2, v2=0
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Parallel v1=2, v2=2

Figure 2. Sequential and parallel scheduled FEM-MGGaBP algorithm on
four levels hierarchical mesh of the L-shaped conductor problem.

important to note that the parallel scheduled FEM-MGGaBP
has a comparable performance to the sequentially scheduled
one showing that FEM-MGGaBP is sustaining high parallel
efficiency. The parallel schedule scheme is based on a mesh
triangle coloring approach, where messages of triangles of
the same color are synchronized concurrently. This coloring
scheme requires minimal overhead processing due to the
utilized hierarchical mesh refinement scheme.

V. Conclusion
A novel FEM-MGGaBP algorithm was introduced and was

shown to achieve high multigrid performance. The FEM-
MGGaBP algorithm promises the same high parallel efficiency
of the original FEM-GaBP algorithm. In the long version
paper, we will provide a detailed formulation of the FEM-
MGGaBP algorithm with more analysis on its performance.
Also, we will detail the new parallel message scheduling
algorithm which is based on a mesh coloring scheme.
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