
Abstract—For transient analysis of eddy-current fields in solid 
rotors which have invariant material properties along its motion 
direction, it is convenient to use the Eulerian formulation where 
only a fixed mesh is needed when modeling motion effect. 
However, a convection-diffusion equation has to be solved 
numerically instead of solving the pure diffusion equation in the 
Lagrangrian description of motion. Furthermore, when the rotor 
rotates at high-speeds, the eddy-current fields usually present 
sharp transition layers and also evolve with time, which makes it 
difficult to solve these fields accurately. To obtain high-resolution 
numerical solution efficiently, an adaptive discontinuous 
Galerkin method is adopted and numerical examples are given to 
showcase the accuracy and effectiveness of the proposed method. 

 
Index Terms—Adaptive mesh, eddy-current magnetic field, 

discontinuous Galerkin, high-speed rotating.  

I. INTRODUCTION 
Solid rotors are commonly encountered in induction motors 

and magnetic brakes [1-2]. For these rotors of cylindrical 
shape, the material configuration and property of the rotor are 
invariably constant along the rotational direction. If the 
Lagrangian formulation is used to model rotational movement, 
special treatments must be paid to the meshing and matching 
boundary condition between the stator and the rotor of the 
devices. To ensure the accuracy of the numerical solution of 
the magnetic fields between the stator and the rotor, recently 
in [3] a novel slave-master technique with more slave modes 
than the master nodes on the sliding surface is proposed. 

To avoid the difficulties when using multiple meshes to 
model motion in the Lagrangian formulation, it is preferable 
to use the Eulerian formulation for the modeling of eddy-
current phenomena including motion effects. In the Eulerian 
description of motion, the eddy-current equation for these 
devices containing solid rotors expressed in time-domain is 
governed by [1] 
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where Ω∂  is the boundary of the problem domain Ω ; Tf is 
the stopping time of the analysis; A is the axial component of 
the magnetic vector potential; σ  is the electric conductivity 
of the conductor; vr  is the velocity of the rotor; ν  is the 

magnetic reluctivity; the excitation term sJ  is the current 
density of the applied source. 

When the rotor rotates at high speeds, in the conducting 
region with positive conductivity, the governing equation is a 
convection-diffusion equation with dominated convection 
coefficient. It is well-known that the solutions of this type of 
equations usually contain sharp and narrow transition layers 
which may also evolving with time [4]. To get high-resolution 
numerical solution without using uniformly refined meshes 
which is too computationally time-consuming, one choice is to 
track the sharp layers by concentrating the mesh nodes around 
thin layers and dynamically reposition the mesh nodes with 
time. This is usually referred as the moving mesh method [5]. 
However, an extra governing equation named the moving 
mesh partial differential equation (MMPDE) to determine the 
motion of the mesh nodes has to be solved besides the 
physical equation concerned. In [6] the adaptive mesh finite 
element method, which allows for adaptive mesh refinement 
as well as mesh coarsening, for transient magnetic field 
analysis is adopted, which is however complicated to 
implement. 

Recently, the discontinuous Galerkin (DG) method has 
been successfully applied to convection-dominated and other 
fluid flow problems [7-10]. The DG method can be viewed as 
an extension of the finite volume method and it allows flexible 
meshes containing hanging nodes since no inter-element 
continuity of the basis function is required in the DG method. 
This makes the h-adaptive refinement and coarsening 
processes much easier to realize. Hence the method is very 
flexible compared with traditional finite element method 
(FEM) when performing mesh refinement and de-refinement, 
as can be seen in Fig. 1. 

 

 
Fig. 1.  A simple example illustrating the refinement and de-refinement 
operations. 
 

In [7, 8], the DG method is used to solve some steady-state 
fluid flow problems using nonconforming meshes containing 
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hanging nodes. In [9] the adaptive DG method was 
successfully applied to a two-phase flow problem. In this 
paper an adaptive discontinuous Galerkin (DG) method is 
proposed where the mesh is dynamically refined or coarsened 
according to the variations of the numerical solution. 
Numerical examples are also given to show the accuracy and 
effectiveness of the method. 

II. DISCONTINUOUS GALERKIN SCHEME FOR EDDY-CURRENT 
EQUATION 

In this section, the formulation of the DG scheme is fully 
described. For convenience of discussion and without loss of 
generality, the following equation is taken as a model problem 
to illustrate the DG scheme: 
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The definition of the DG scheme is following the same way 

given in [11]. Let Ah be the DG approximation of the 
unknown magnetic potential A in the space Vh, then multiply 
(2) by an arbitrary test function vh in the same space Vh and 
integrate by parts, the semi-discrete DG formulation can be 
obtained as follows 
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where the definitions of the operators εa (u,w), b(u,w) and 
L(u,w) are given by 
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where |e| is the length of the edge e, û  is the upwind 
convective flux, m0=1 and n0=1 are stabilization parameters. 
In this paper the parameter ε  is set to be 1 and the resultant 
DG scheme is actually a non-symmetric interior penalty 
Galerkin method. 

The nonlinear reluctivity in the DG formulation can be 
solved using traditional Newton-Raphson iteration method. At 
the starting time t=0, the initial value is projected onto the DG 
space Vh. For time discretization of (3), the backward Euler 
scheme is used in this paper. 

III. NUMERICAL EXAMPLE 
In the numerical example, the adaptive DG method is 

applied to the numerical solution of the TEAM workshop 
problems 30A and 30B [12].  

Select different rotation speeds, the magnetic fields are 
computed and the torque is also calculated to Tf=100ms for 
both problems. The torque errors of the DG method (P2 DG 
basis functions are used and about 3700 nodes in the mesh) 
between the analytical values are shown in Fig. 2 and Fig. 3, 

respectively. For comparison, the results given in [12] using 
the traditional FEM are used as reference solutions. Once can 
clearly see that when the rotor is rotating at high speeds, the 
torque calculated by using the adaptive DG method is more 
accurate than using the FEM. 

 

 
Fig. 2. Torque errors of the three-phase motor of the TEAM workshop 
problem 30A using DG and FEM for different rotor speeds. 

 

 
Fig. 3. Torque errors of the single-phase motor of the TEAM workshop 
problem 30B using DG and FEM for different rotor speeds. 
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