
Abstract —The paper deals with the formulation and
programming code architecture of the software component
generated by the Reluctool software [6] for the modeling by
large reluctance networks in electrical machine applications.
Portable model formulation and code architectutres are
introduced facing the model generation time, the model size, the
computation time. Different approaches are discused. Finally, a
code architecture is compared with the actual code architecture
of the commercial version of Reluctool.

I. INTRODUCTION

A designer can use different kinds of models in order to size
and optimize a device. Some of them, like finite-element
model or boundary element method, can be very precise, but
need large computation time, limiting the number of
parameters and constraints that can be taken into account. So
the designer should also use an approach like the reluctance
network approach, when it is necessary to deal with a large
number of parameters and many constraints [1]. The
modeling of electrical machine by reluctance network always
starts with a network building according to the paths of
magnetic fluxes using a finite element analysis. The size of the
network depends on the model of the magnetic circuit, the
fineness level and complexity of the paths of the magnetic
fluxes. In the case of electrical machines, the number of
components in a reluctance network depends mainly on the
number of the slots of the stator and the number of poles of
the rotor. Specifically, the reluctance network of machines
needs to modeling the rotation of rotor on an electrical
period in order to evaluate harmonic values of the torque and
the back-emf [2]. For this modeling, the airgap reluctance
network should change its topology to adapt with many rotor
positions [4]. At the present time, in the context of portable
software component [3], the variability of airgap network
needs to regenerate software component at each network
topology; or the designer should predict all the possible
topologies needs to calculate [4] and generate in one time the
software component. These approaches induce problems to
resole for Reluctool software e.g.:
• reduction of the size of the generated software component

to be able to obtaining a modeling of the large reluctance
networks of machine applications and integrate different
topologies in a same software component,

• reduction of the time necessary to generate large models,
• acceleration of the computation model time and its

derivatives,
• calculation of the necessary derivatives for the

optimization algorithm behind.
In section II, sizing model generation methodology is
introduced. Different approaches of formulation model and
code architectures are proposed to push back the existing

limitations. Finally, two different machine models are tested
to compare these approaches.

II. GENERATION METHODOLOGY OF MODEL

A. Function call versus expression substitution

In order to formulate all the outputs and its derivatives, all
the basic element submodels, contained in the network, are
converted into equations and functions. All the equations and
functions can be established, based on the direct
mathematical expression substitution approach. For example,
a nonlinear reluctance is calculated by f(φ)=H(B).L/φ where
H is the induction and calculated by Eq.1. a, Js, µr are model
coefficients. B is the field and calculated as function of the
flux φ (B=φ/S). L and S are geometries parameters of the
reluctance. So, the expression substitution gives the final
expression of the nonlinear reluctance as function of flux in
Eq. 2. The translated java code of Eq.2 is long.

() () ()
()

()
() ()()a

a

aa

aJ

B
aJJBaBH r

r

r

rs

r
rssrr −⋅

−
−⋅−

−⋅
⋅−⋅−⋅−⋅−⋅+−= µµ

µ
µ

µ
µµµµ 02

2

2/
2

4

2

1
212)(

(1)

() ()
()

()
()

() ()()
ϕ

µµ
µ

µ
µ

ϕµ
µµϕµϕ L

a
a

aa

aJ
S

aJJ
S

af r

r

r

rs

r

rssrr ⋅−⋅

−
−⋅−

−⋅

⋅−
⋅−⋅−⋅−

⋅+−= 02

2

2/
2

4

2

1
212)(

(2)

Contrarily, if the function call approach is used. The
reluctance formulation will be very short and compact as
f(φ)=H(φ/S).L/φ. Therefore, this approach can reduce the size
of all the functions and the equations, so its translated java
code size. Table I comprares these approaches. The detail
will be introduced in the full paper.

TABLE I
FUNTION CALL VERSUS EXPRESSION SUBSTITUTION

Functional substitutions Functional calls
- explicit calculation
- large formula

- formal and short
- numerical stability

B. Scalar approach versus vectorial approach

In parallel the establishment of all the equations and
functions of all the basic element submodels, the reluctance
network has to be formulated. A reluctance network is
represented by an implicit system f(ψ,I) (Eq.3). It can be
symbolically built from a set of independent meshes of the
network [3].

ψφψφψ ⋅==⋅⋅⋅−= TT SSIRSIFIf ,0),()(),((3)

Here, F is the vector of the magnetomotive forces of every
flux loop. S is the loop matrix. R is the diagonal matrix
containing all the reluctances of the circuit. Φ is the vector of
reluctance fluxes and ψ is the vector of loop fluxes. I is the
vector of input parameters. In order to solve the system f(ψ,I)

Computation Code of Software Component for the
Design by Optimization of Electromagnetical Devices

H. Nguyen-Xuan, L. Gerbaud, L. Gabuio, F. Wurtz
Grenoble Electrical Engineering Laboratory (G2Elab) ENSE3 (Grenoble INP-UJF, CNRS UMR 5529)

BP 46 –38402 Saint Martin d’Hères Cedex, France
Hoa.Nguyen-Xuan@g2elab.grenoble-inpg.fr

and to calculate all the derivatives of model outputs, the
generated model has to calculate all derivatives of every
equation f(ψ,I)i according to its loop fluxes (∂fi(ψ,I)/∂ψi, i =
1..n) and its inputs (∂fi(ψ,I)/∂Ij, i = 1..n and j=1..k) (see more
detail in the [3]). All the symbolic derivatives of the model
outputs according to its inputs also have to be made. Then
the model is converted into a portable programming language
as Java and compiled. In these works, two different
approaches (vectorial or scalar) can be implemented (Fig. 1).

Generate
d Model

O1

j

i

I

O

∂
∂

[]
[]kj

mi

..1

..1

∈
∈

Om

Ik

I1

I

O

∂
∂[]

Generated
Model

[I]
[O]

Vectorial

approach

Scalar approach

H(b)=a*x…

R(flux) = a*x+b..

F0(flux)=….

Fn(flux)=…

Fig. 1.Sizing model generation from reluctance network

At the present time, the scalar approach is implemented in
Reluctool by other old works where all the equations of the
implicit system f(ψ,I)i are found by expanding Eq.3 [5].
Then, all necessary derivatives are calculated by symbolic
derivation method applied on each scalar function f(ψ,I)i.
Finally, each equation is translated as a java scalar method in
a java package that is compiled to obtain an executable
software component [5]. In fact, this scalar approach is
simple to implement. However, this approach is very time
consuming for the making of the derivative formulations,
mostly for the large reluctance networks. In addition, the
number of the generated java method increases according to
the square of the implicit system size. So the size of software
component generated increases significantly when the
reluctance network is large. Furthermore, the compilation of
the generated codes is time consuming and memory
consuming due to the limitations of Java.
Contrarily, the vectorial approach can be used to formulate
the model and to structure again le code architectures of the
generated software component. This approach formulates
f(ψ,I) and its derivatives with matrix equations as Eq.3, Eq.4.

()
() ()

⋅∂∂⋅−∂∂⋅⋅⋅−∂∂=∂∂
⋅⋅∂∂⋅−⋅⋅−=∂∂

φφψφψ
φφφφψψ

IIRSISIRSIIFIIf

SIRSSIRSIf
T

TT

/),(/),(/)(/),(

/),(),(/),(
(4)

The model generation process of any reluctance network has
to calculate only the simple derivatives: ∂R(Φ,I)/∂Φ,
∂R(Φ,I)/∂I, ∂F(I)/∂I. With the vectorial formulation, f(ψ,I)
and its derivatives are translated into java vectorial methods.
They are calculated by matrix operator. So, this vectorial
approach can benefit of all the common expressions
appearing in Eq.3 and Eq.4, as S.R(Φ,I). ST and ST, to
accelerate the computation tasks. The resulting calculation
sequence will be presented in the full paper. So, the
computation is faster. Table II comprares these approaches.
The detail will be introduced in the full paper.

TABLE II
SCALAR VERSUS VECTORIAL APPROACH

Scalar formulation Vectorial formulation
- simplicity to implement
- large size of software component
- time consuming of generation
model
- difficulty of the rotor rotation
formulation

- small size of software component
- quickness of generation model
- acceleration of model calculation
- vectorial formulation generic
- possibility of the rotor rotation
formulation

III. RESULTS

In this section, the paper compares these approaches for two
machine models (Claw-Pole Alternator model and 12/8
PMSM) according to the following aspects: expression
substitution, scalar approach, function calls, and vectorial
approach. The results are shown in Table III.

TABLE III
COMPARISON BETWEEN DIFFERENT APPROACHES

Used Method Descriptions
Claw-Pole
Alternator

12/8
PMSM

Substitution
and scalar

Generated model size 2.3MB

unavailable
Model generation time 240(s)
Model computation time 0.437(s)
Derivative computation time 0.875(s)

Functional
Call and
Vectorial

Generated model size 0.5MB 1.2MB
Compilation time 40(s) 60(s)
Computation time 0.243(s) 0.203(s)
Derivative computation time 0.265(s) 0.230(s)

As shown in Table III, the second approach reduces 4.6
times the generated model size and 16 times model
generation time, less than the first approach with Claw-Pole
Alternator model. Specifically, the first approach does not
allow to generate the model of 12/8 PMSM because of code
compiler memory limitation. But the second approach
generates fastly this model. Furthermore, this second
approach reduces also, twice the model computation time
and 4 times the derivatives computation time, less than the
first approach. This result will be detailed in the full paper.

IV. CONCLUSION

In the paper, different approaches formulate the derivative
and to structure the code of reluctance network model have
been introduced in order to decrease the generation time and
the size of model generated by Reluctool. The results shown
that function call and vectorial approach perform and
decrease limit of generation of models and reduced also the
computation time and the derivative computation time of the
generated models.

ACKNOWLEDGMENTS
The authors thank the French National Reasearch Agency
(ANR) for their support throughout the project 3MT.

V. REFERENCES

[1] T.Raminosoa, I.Rasoanarivo, F.-M.Sargos, R.N.Andriamalala,
"Constrained Optimization of High Power Synchronous Reluctance
Motor Using Non Linear Reluctance Network Modeling," Industry
Applications Conference, 41st IAS Annual Meeting. Conference
Record of the IEEE,vol.3,no.,pp.1201-1208,8-12 Oct. 2006

[2] H. Dogan, L.Garbuio, H. Nguyen-Xuan, B.Delinchant, A.Foggia and
F.Wurtz, “Multistatic Reluctance Network Modeling for the Design of
Permanent Magnet Synchronous Machines” IEEE Conference on
Electromagnetic Field Computation, CEFC 2012, Oita, Japan.

[3] A. Delale, L. Albert, L. Gerbaud and F.Wurtz, “Automatic Generation
of Sizing Models for the Optimization of Electromagnetic Devices,
Using Reluctance Networks”. Magnetics, IEEE Transactions on ,
vol.40, no.2, pp. 830- 833, March 2004

[4] Y.Tang, T. E.Motoasca; J. J. H.Paulides, E. A.Lomonova, "Analytical
modeling of flux-switching machines using variable global reluctance
networks," Electrical Machines (ICEM), 2012 XXth International
Conference on , vol., no., pp.2792-2798, 2-5 Sept. 2012.

[5] B.du Peloux, L.Gerbaud, F.Wurtz, V.Leconte, F.Dorschner,
"Automatic generation of sizing static models based on reluctance
networks for the optimization of electromagnetic devices," Magnetics,
IEEE Transactions on ,vol.42, no.4, pp.715-718, April 2006

