
Abstract—We present a performance analysis of a parallel

implementation of both conjugate gradient and preconditioned

conjugate gradient solvers using graphic processing units with

CUDA parallel programming model. The solvers were optimized

for a fast solution of sparse systems of equations arising from

Finite Element Analysis (FEA) of electromagnetic phenomena.

The preconditioners were Incomplete Cholesky factorization and

Incomplete LU factorization. Results show that the speedup

factor for the incomplete Cholesky decomposition was above 3

compared to the CPU implementation.

Index Terms—Linear systems, Finite Element Methods,

Parallel Processing, Performance Analysis, Graphic Processing

Unit (GPU).

I. INTRODUCTION

 Emerging many-core platforms yield enormous raw

processing power, in the form of massive parallelism [1]-[3]-

[8]. Owing to both complexity and large scale of the problems

arising in the Finite Element Analysis of electromagnetic

phenomena, GPUs have recently been applied in iterative

methods for solving sparse linear systems, especially in the

sparse matrix-vector multiplication (SpMV), which represents

their dominant computational cost [3]. This product is

computed directly and affects the memory requirement and

algorithm speed.

The conjugate gradient (CG) method is commonly used in

iterative algorithm for solving sparse symmetric positive

definite linear systems. However, in this method many

iterations are required to reach a certain specified accuracy. A

technique to accelerate the convergence is preconditioning the

matrix, which improves its conditioning [6]. Two widespread

preconditioning techniques are incomplete Cholesky

factorization (IC) and incomplete LU factorization (ILU),

which are often used along with the CG method in FEA of

electromagnetic phenomena.

These preconditioners require extra storage for processing

of triangular systems in the forward and backward substitution

[4]-[6]. Due to its nature, these mechanisms are known to be

the bottleneck of every sequential implementation of such

preconditioners along with SpMV. However, these steps can

be parallelized on graphics hardware, and are applied at each

iteration of the sparse linear systems.

Therefore, the aim of this paper is twofold. First, we will

focus on implementations of both CG and preconditioned

conjugate gradient (PCG) methods, which are optimized for

GPUs with CUDA parallel programming model. We will then

compare their performance. Second, we will examine the

impact of parallelization of forward and backward substitution

in the PCG method. Here, we will show that a proper

implementation of the algorithm can still provide significant

speedups despite the inherently sequential nature of the two

most well-known preconditioners used in the solution of sparse

linear system by iterative algorithms.

II. RELATED WORK

As mentioned previously, preconditioning is necessary for

faster convergence of iterative methods, which can be

accomplished using algorithms such as the IC an ILU

factorizations. These factorizations decompose the coefficient

matrix into two triangular matrices, which can then be solved

by forward and backward substitution.

After the advent of NVIDIA CUDA, GPUs have drawn

much more attention for sparse linear algebra and the solution

of sparse linear systems [8]. There are several works which

attempts to optimize the PCG method [8]-[2]-[5]. The first

authors analyze the performance of the GPU using ICCG

method and incomplete LU factorization preconditioned

GMRES method. However, in the first case, the speedup was

up to 3 for one case. The second one presents an ICCG

implementation optimized on both multi-core and GPU

architectures by using domain decomposition. In [5], the

authors implemented a variable preconditioned Krylov

subspace method with mixed precision on GPU for solving the

linear system obtained from the edge element.

Other authors [9] presented some PCG implementations for

GPU using CUDA, with both Jacobi and SSOR

preconditioners, whereas in [7] the preconditioning matrix was

obtained from an approximate inverse derived from the SSOR

preconditioner.

Implementations of both Incomplete LU and Cholesky

preconditioned iterative methods in GPU are presented in [4].

The author used these preconditioners with Bi-Conjugate

Gradient Stabilized and Conjugate Gradient iterative methods,

respectively. The performance achieved in this case was a

speedup of 2 at most.

III. METHODOLOGY AND RESULTS

In this work, we analyze the solution of a system arising

from the discretization of the Laplace equation in a 3D

domain. The FEA was applied to compute the characteristics

of a grounding system in steady state. The preconditioned

matrix is factorized using both IC and ILU preconditioners [6].

Efficient Preconditioned Conjugate Gradient

Parallelization on GPU
A. F. P. Camargos

1, 2
, V. C. Silva

1

1
 Universidade de São Paulo - Escola Politécnica

Av. Prof. Luciano Gualberto, T. 3, nº 158, 05508-900, São Paulo, Brasil
2
 Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais (IFMG) – Departamento de Engenharia

Rua Padre Alberico, nº 440, 35570-000, Formiga, Minas Gerais, Brasil

anaflavia@ifmg.edu.br, vivianecs@usp.br

mailto:anaflavia@ifmg.edu.br
mailto:vivianecs@usp.br

The following methods of accessing and manipulating

entries of the matrix were implemented: Coordinate Format

(COO) and Compressed Sparse Row Format (CSR) [3]. The

tests were executed on an Intel Core i5 CPU with 3.2 GHz,

16GB of RAM and a GPU NVidia Geforce GT 240 with a

total of 12 multi-processors and 96 cores running at 0.8 GHz

and 54.4 GB/sec memory bandwidth.

The total execution times (including element integration,

assembling and CG solving) obtained for five different

implementations are shown in Table I in order to compare

their computational performance. Each test case, with two

mesh sizes (coarse and fine), was run five times with a

precision of 1e-6 for the CG solution and PCG solution. The

values represent the average values of the five runs.

The first and second columns refer to the approaches

executed in CPU, whereas the third, fourth and fifth ones were

run in the GPU. In the first column, the implementation uses

sparse data structure (SDS), whereas in columns two to five

the CSR format was employed. In the second column, the

COO format was used, as well. The substantial improvement

in the computational performance with the use of GPU parallel

solving is self-evident from the Table I.

TABLE I

TOTAL EXECUTION TIME IN SECONDS

Mesh -

NNZ*

CPU GPU

CG –

SDS

CSR –

SpMV

CG -

CSR

ILUCG

- CSR

ICCG -

CSR

coarse –

325,992
30701.84 32.41 12.20 10.88 10.79

fine –

682,689
142203.52 92.53 35.82 35.78 30.67

* Matrix non-null entries

The first and second implementations are sequential and

were executed in the CPU using CG for solving sparse linear

systems, with a SDS. The CSR–SpMV, however, was

developed using compressed sparse row format in the sparse

matrix-vector. Notice that the time to solve CSR–SpMV using

compressed format was faster than CG–SDS.

The other methods were executed in the GPU with CUDA

parallel programming model. For each iteration of the ICCG

and ILUCG, it is necessary to perform one sparse matrix-

vector multiplication and two triangular solutions, which

corresponds to the most costly step in the solution process. In

the pure CG implementation, this triangular solution is not

necessary.

For the ICCG algorithm, the processing of the triangular

systems in the forward and backward substitution consumes

around 26% of the total time in the GPU. Nevertheless, the

total time to solve the system without preconditioning is

superior, namely, 10.79 seconds for the ICCG-CSR

implementation against 12.20 seconds for the CG-CSR

implementation.

The results of the numerical experiments in the Table I were

used to obtain the speedup, shown in Fig.1. The speedup with

respect to the sequential CSR–SpMV method. It can be seen

that the ICCG implementation is three times faster than CSR-

SpMV method and also faster than ILUCG. The number of

iterations with the two meshes was nearly the same (105 - 111).

Fig. 1. Speedup with respect to CSR-SpMV

Furthermore, the speedup of the preconditioned solvers

was better when compared to the pure CG algorithm.

IV. CONCLUSIONS

We present a comparative analysis of the performance of

both CG and PCG algorithms implemented in GPU using

CUDA. Despite the forward and backward substitution steps

that occur in PCG algorithms, their GPU implementations still

perform better than pure CG versions, thanks to the significant

reduction in the number of iterations in the former. The

speedup we achieved was similar to that reported in [8],

nevertheless, the total execution time that we present also

includes element integration and assembling of the global

system.

ACKNOWLEDGEMENT

The authors would like to acknowledge CNPQ (Conselho

Nacional de Desenvolvimento Científico e Tecnológico).

REFERENCES

[1] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips, “GPU computing,” Proceedings of the IEEE, vol.96, nº.5, pp.

879-899, 2008.

[2] H. Moghnieh, D. A. Lowther, “Understanding the efficiency of parallel

incomplete Cholesky preconditioners on the performance of ICCG

solvers for multi-core and GPU systems,” IEEE 14th Biennial

Conference on Electromagnetic Field Computation (CEFC), Jan. 2010.

[3] N. Bell and M. Garland. “Efficient sparse matrix-vector multiplication

on CUDA,” NVIDIA Technical Report NVR-2008-004, NVIDIA

Corporation, Dec. 2008.

[4] M. Naumov, “Incomplete-LU and Cholesky preconditioned iterative

methods using CUSPARSE and CUBLAS,” NVIDIA Corporation, Jun.

2011. Available from: https://developer.nvidia.com.

[5] S. Ikuno, Y. Kawaguchi, N. Fujita, T. Itoh, S. Nakata, K. Watanabe,

“Iterative solver for linear system obtained by edge element: variable

preconditioned method with mixed precision on GPU,” IEEE

Transactions on Magnetics, vol. 48, n° 2, Feb. 2012.

[6] Y. Saad, Iterative Methods for Sparse Linear Systems, New York: PWS

Publishing, 2nd ed., 2003, pp. 275-369.

[7] R. Helfenstein, J. Koko, “Parallel preconditioned conjugate gradient

algorithm on GPU”, Journal of Computational and Applied

Mathematics, Elsevier, vol. 236, issue 15, pp. 3584–3590, Sep. 2012.

[8] R. Li, Y. Saad, “GPU-accelerated preconditioned iterative linear

solvers,” Available from: http://citeseerx.ist.psu.edu/index.

[9] M. Ament, G. Knittel, D. Weiskopf, W. Straßer, “A parallel

preconditioned conjugate gradient solver for the Poisson problem on a

multi-GPU platform,” IEEE 18th Euromicro International Conference

on Parallel, Distributed and Network-Based Processing (PDP), pp.

583-592, Feb. 2010.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ikuno,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kawaguchi,%20Y..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fujita,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fujita,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nakata,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nakata,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=20
http://www.sciencedirect.com/science/article/pii/S0377042711002196
http://www.sciencedirect.com/science/article/pii/S0377042711002196
http://www.sciencedirect.com/science/journal/03770427
http://www.sciencedirect.com/science/journal/03770427
http://www.sciencedirect.com/science/journal/03770427/236/15
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5452233
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5452233

