
Abstract—We present a performance analysis of a parallel 

implementation of both conjugate gradient and preconditioned 

conjugate gradient solvers using graphic processing units with 

CUDA parallel programming model. The solvers were optimized 

for a fast solution of sparse systems of equations arising from 

Finite Element Analysis (FEA) of electromagnetic phenomena. 

The preconditioners were Incomplete Cholesky factorization and 

Incomplete LU factorization. Results show that the speedup 

factor for the incomplete Cholesky decomposition was above 3 

compared to the CPU implementation.  

 

Index Terms—Linear systems, Finite Element Methods, 

Parallel Processing, Performance Analysis, Graphic Processing 

Unit (GPU). 

I. INTRODUCTION 

 Emerging many-core platforms yield enormous raw 

processing power, in the form of massive parallelism [1]-[3]-

[8]. Owing to both complexity and large scale of the problems 

arising in the Finite Element Analysis of electromagnetic 

phenomena, GPUs have recently been applied in iterative 

methods for solving sparse linear systems, especially in the 

sparse matrix-vector multiplication (SpMV), which represents 

their dominant computational cost [3]. This product is 

computed directly and affects the memory requirement and 

algorithm speed.   

The conjugate gradient (CG) method is commonly used in 

iterative algorithm for solving sparse symmetric positive 

definite linear systems. However, in this method many 

iterations are required to reach a certain specified accuracy.  A 

technique to accelerate the convergence is preconditioning the 

matrix, which improves its conditioning [6]. Two widespread 

preconditioning techniques are incomplete Cholesky 

factorization (IC) and incomplete LU factorization (ILU), 

which are often used along with the CG method in FEA of 

electromagnetic phenomena.  

These preconditioners require extra storage for processing 

of triangular systems in the forward and backward substitution 

[4]-[6]. Due to its nature, these mechanisms are known to be 

the bottleneck of every sequential implementation of such 

preconditioners along with SpMV. However, these steps can 

be parallelized on graphics hardware, and are applied at each 

iteration of the sparse linear systems. 

Therefore, the aim of this paper is twofold. First, we will 

focus on implementations of both CG and preconditioned 

conjugate gradient (PCG) methods, which are optimized for 

GPUs with CUDA parallel programming model. We will then 

compare their performance. Second, we will examine the 

impact of parallelization of forward and backward substitution 

in the PCG method. Here, we will show that a proper 

implementation of the algorithm can still provide significant 

speedups despite the inherently sequential nature of the two 

most well-known preconditioners used in the solution of sparse 

linear system by iterative algorithms. 

II. RELATED WORK 

As mentioned previously, preconditioning is necessary for 

faster convergence of iterative methods, which can be 

accomplished using algorithms such as the IC an ILU 

factorizations. These factorizations decompose the coefficient 

matrix into two triangular matrices, which can then be solved 

by forward and backward substitution. 

After the advent of NVIDIA CUDA, GPUs have drawn 

much more attention for sparse linear algebra and the solution 

of sparse linear systems [8]. There are several works which 

attempts to optimize the PCG method [8]-[2]-[5]. The first 

authors analyze the performance of the GPU using ICCG 

method and incomplete LU factorization preconditioned 

GMRES method. However, in the first case, the speedup was 

up to 3 for one case. The second one presents an ICCG 

implementation optimized on both multi-core and GPU 

architectures by using domain decomposition. In [5], the 

authors implemented a variable preconditioned Krylov 

subspace method with mixed precision on GPU for solving the 

linear system obtained from the edge element. 

Other authors  [9] presented some PCG implementations for 

GPU using CUDA, with both Jacobi and SSOR 

preconditioners, whereas in [7] the preconditioning matrix was 

obtained from an approximate inverse derived from the SSOR 

preconditioner. 

Implementations of both Incomplete LU and Cholesky 

preconditioned iterative methods in GPU are presented  in [4]. 

The author used these preconditioners with Bi-Conjugate 

Gradient Stabilized and Conjugate Gradient iterative methods, 

respectively. The performance achieved in this case was a 

speedup of 2 at most.  

III. METHODOLOGY AND RESULTS 

In this work, we analyze the solution of a system arising 

from the discretization of the Laplace equation in a 3D 

domain. The FEA was applied to compute the characteristics 

of a grounding system in steady state. The preconditioned 

matrix is factorized using both IC and ILU preconditioners [6]. 
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The following methods of accessing and manipulating 

entries of the matrix were implemented: Coordinate Format 

(COO) and Compressed Sparse Row Format (CSR) [3]. The 

tests were executed on an Intel Core i5 CPU with 3.2 GHz, 

16GB of RAM and a GPU NVidia Geforce GT 240 with a 

total of 12 multi-processors and 96 cores running at 0.8 GHz 

and 54.4 GB/sec memory bandwidth.  

The total execution times (including element integration, 

assembling and CG solving) obtained for five different 

implementations are shown in Table I in order to compare 

their computational performance. Each test case, with two 

mesh sizes (coarse and fine), was run five times with a 

precision of 1e-6 for the CG solution and PCG solution. The 

values represent the average values of the five runs.  

The first and second columns refer to the approaches 

executed in CPU, whereas the third, fourth and fifth ones were 

run in the GPU. In the first column, the implementation uses 

sparse data structure (SDS), whereas in columns two to five 

the CSR format was employed. In the second column, the 

COO format was used, as well. The substantial improvement 

in the computational performance with the use of GPU parallel 

solving is self-evident from the Table I. 

TABLE I 

TOTAL EXECUTION TIME IN SECONDS 

Mesh - 

NNZ* 

CPU GPU 

CG – 

SDS 

CSR – 

SpMV 

CG - 

CSR 

ILUCG 

- CSR 

ICCG - 

CSR 

coarse – 

325,992 
30701.84 32.41 12.20 10.88 10.79 

fine – 

682,689 
142203.52 92.53 35.82 35.78 30.67 

* Matrix non-null entries    
 

The first and second implementations are sequential and 

were executed in the CPU using CG for solving sparse linear 

systems, with a SDS. The CSR–SpMV, however, was 

developed using compressed sparse row format in the sparse 

matrix-vector. Notice that the time to solve CSR–SpMV using 

compressed format was faster than CG–SDS.  

The other methods were executed in the GPU with CUDA 

parallel programming model. For each iteration of the ICCG 

and ILUCG, it is necessary to perform one sparse matrix-

vector multiplication and two triangular solutions, which 

corresponds to the most costly step in the solution process. In 

the pure CG implementation, this triangular solution is not 

necessary.  

For the ICCG algorithm, the processing of the triangular 

systems in the forward and backward substitution consumes 

around 26% of the total time in the GPU. Nevertheless, the 

total time to solve the system without preconditioning is 

superior, namely, 10.79 seconds for the ICCG-CSR 

implementation against 12.20 seconds for the CG-CSR 

implementation. 

The results of the numerical experiments in the Table I were 

used to obtain the speedup, shown in Fig.1. The speedup with 

respect to the sequential CSR–SpMV method. It can be seen 

that the ICCG implementation is three times faster than CSR-

SpMV method and also faster than ILUCG. The number of 

iterations with the two meshes was nearly the same (105 - 111). 

 
Fig. 1. Speedup with respect to CSR-SpMV 

 

Furthermore, the speedup of the preconditioned solvers 

was better when compared to the pure CG algorithm. 

IV. CONCLUSIONS 

We present a comparative analysis of the performance of 

both CG and PCG algorithms implemented in GPU using 

CUDA. Despite the forward and backward substitution steps 

that occur in PCG algorithms, their GPU implementations still 

perform better than pure CG versions, thanks to the significant 

reduction in the number of iterations in the former. The 

speedup we achieved was similar to that reported in [8], 

nevertheless, the total execution time that we present also 

includes element integration and assembling of the global 

system. 
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