
Abstract—The efficiency of numerical integration methods for 

finite element analysis (FEA) is investigated. The focus of this 

paper, within the context of traditional FEA, is the post-

processing operation of numerical integration over a subdomain 

containing potentially large numbers of elements. Improvements 

to the efficiency of such operations directly increase the efficacy 

of the assembly process for the mass and stiffness matrices of a 

generalized family of macro elements. The analogous post-

processing and matrix assembly methods are refined such that 

repeated computations are eliminated, effectively treating a large 

number of traditionally separate numerical integrations as one 

full-domain integral. Electromagnetic applications are tested to 

demonstrate the efficiency of the method. Results confirm a ten-

fold reduction in computational cost for a range of applications. 

Index Terms—Computer aided analysis, scientific computing, 

computational electromagnetics, finite element methods. 

I. INTRODUCTION 

Finite element methods (FEM) for electromagnetic 

problems rely heavily on accurate and efficient numerical 

integration schemes in both the assembly, and post-processing 

phases of analysis [1]. The objective of this paper is to 

describe and illustrate the performance of a new technique 

developed to improve the efficiency of the integration of field 

solutions, as well as the assembly of the local mass and 

stiffness matrices for a generalized family of macro elements, 

which require numerical integration over potentially large 

collections of elements [2]. The method is shown for two-

dimensional field solutions on curvilinear triangular meshes 

and compared to a “classical” numerical integration approach. 

The accuracy and efficiency of both methods are assessed and 

compared. It is shown that for the same level of accuracy, the 

new technique is computationally less expensive, with gains 

increasing as the number of elements increases. 

II. THEORY 

Consider the integral � = ∬ �(�, �)Ω ����, where Ω is the 

domain of a two-dimensional Helmholtz problem, and � is the 

FEM solution to the problem. This equation can be evaluated 

numerically by integrating element by element and summing 

the results. This is accomplished either analytically (using the 

same concepts employed to assemble universal matrices [3]), 

or by using numerical quadrature schemes (for example, by 

using [4] for the abscissae and weights for the triangle). The 

second approach has been favored in element assembly for its 

ability to deal with non-linear materials and curvilinear 

element geometries, and will be the focus of this work. 

Expanding the solution � in terms of its corresponding 

weighted sum of basis functions over each element and using 

an appropriate quadrature rule, the integral can be rewritten as 

� ≅ ∑{∑[(∑��(�� , ��)����
�=1 ) |� �(�� , ��)|]��

 
�=1 }

"
�=1 , (1) 

where the domain Ω is comprised of " elements, each of 

which has � basis functions ��(�, �) with associated field 

values ��� and Jacobian determinant |� �(�, �)| (corresponding 

to the transformation from global ��-space to simplex ��-

space). Each element is evaluated at the   quadrature 

abscissae (�� , ��) and multiplied by their respective weights �� . Superscript � denotes element-dependent quantities. 

For interpolatory [3] or hierarchal [5] bases, all elements 

share the same basis functions regardless of element geometry 

(in the hierarchal case, lower order elements can be interpreted 

as higher order elements with zero-valued higher order basis 

functions). Therefore, permuting the “classical” ordering of 

the operations in (1) can save function evaluations when 

performing numerical integration over collections of elements. 

Rearranging (1) yields 

� ≅ ∑{∑[��(�� , ��)(∑���|� �(�� , ��)|"
�=1 )]

�
�=1 }�� 

�=1 , (2) 

which we call the “stacking” method, since the manipulations 

can be interpreted as transforming a set of " integrands over " 

element domains into one integrand over a common domain. 

If we restrict our discussion to planar curvilinear triangles 

with quadratic edges, as described in [1], the Jacobian 

determinant |� �(�, �)| in (2) can be written as 

|� �(�, �)| = )1� + )2�� + )3�� + )4��2 + )5��� + )6��2, (3) 

where the coefficients )0� for 0 ∈ ℕ ranging from 1 to 6 are 

determined by the positions of the geometric vertex and mid-

side nodes of each element [6]. Then (2) can be vectorized as 

 � ≅ diag(78�)�9) ⋅ ;, (4) 

where 7 ∈ ℝ ×� with entries ��� = ��(��, ��), 8 ∈ ℝ�×" with Φ�� = ��(�), �) ∈ ℝ"×6 with (?))�� = )�(�), �9 ∈ ℝ6×  with (?9)� = [1 ��  ��   ��2  ����   ��2]B  its �0ℎ column, and ; ∈ ℝ ×1. 
Two particularly interesting post-processing operations 

which are also associated with constructing the stiffness and 

mass matrix entries for the generalized macro elements as 

described in [2] – where �D and �E represent two different 

piecewise-defined subdomain basis functions – are given by 

FDE = ∫∇�D ⋅ ∇�E ����Ω
, IDE = ∫�D�E ����Ω

, (5) 
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over the mesh of curvilinear triangles used to discretize the 

subdomain Ω. To use one such generalized macro element in a 

larger mesh, computing the entries (5) can be done using 

generalizations of the “stacking” method as follows. 

Consider the diagonal entries of the mass matrix (the off-

diagonal terms follow the same development, but they have 

been omitted for brevity and clarity). Since �D and �E are both 

piecewise-defined over each constituent element, we have 

I ≅∑{∑[(∑��(�� , ��)����
�=1 )

2 |? �(�� , ��)|]��
 
�=1 }

"
�=1  (6) 

where the only change from (1) is the squared basis function 

expansion. However, note that this squared expansion can be 

reinterpreted as a new field � ̃whose effective basis functions 

are defined by �̃L(�, �) = ��(�, �) ⋅ ��(�, �) and whose field 

values are �L̃� = ������ for all possible combinations of � and �. 
Following this reinterpretation, the “stacking” method remains 

unchanged, only the number of effective basis functions and 

field values per element have increased. 

Similarly, consider the diagonal stiffness matrix entries 

(again for brevity). Note that ∇�D ⋅ ∇�D = (M��D)2 + (M��D)2 
in Cartesian coordinates, where M� and M� denote the partial 

derivatives with respect to � and � respectively. It is sufficient 

to consider the first term (M��D)2 alone, to understand how the 

entries of the stiffness matrix can be computed using a 

modified “stacking” method approach. Using the chain rule to 

obtain expressions for the partial derivative of ��(�, �) with 

respect to �, and expanding (M��D)2 yields 

F� =∑
⎩⎪
⎨⎪
⎧
∫∫ ∑∑������|� �| [(M�

�
M� )

2 M��M� M��M� �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
W�′

�
�=1

�
�=1

1−�

0
1

0
�"

�=1  

�− 2 M��M� M�
�

M� M��M� M��M�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
W�′′

+ �(M��M� )
2 M��M� M��M� ]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
W�′′′

�ξ��
⎭⎪⎬
⎪⎫, 

(7) 

where the M��� and M��� expressions depend on the curvilinear 

triangle geometry [1]. Consider W�′  to formulate the “stacking” 

method for (7). W�′′ and W�′′′ are treated analogously. 

In order to use the “stacking” method, all quantities in (7) 

that rely on element geometry must be characterized by a 

polynomial expression. Here, unlike in the previous two cases, 

the expression (M���)2  |� �|⁄  is no longer polynomial in � and �. For a planar, quadratic curvilinear, triangular geometry, the 

expression is a rational function of bivariate, complete, degree 

2 polynomials. Equation (4) must be modified such that 

 � ≅ diag{78[(��2�9) ∘ (�)�9̂) ]} ⋅ ;, (8) 

where ∘ is the Hadamard product and ̂  denotes the Hadamard 

inverse (i.e. (h ∘ ĥ)�� = 1). Note that the matrix ��2 has the 

same structure as �), but with coefficients arising from the 

expression (M��)2. Finally, re-indexing such that �̃L(�, �) =M���(�, �) ⋅ M���(�, �) with �L̃� = ������, the stiffness matrix 

can be computed using the “stacking” method. 

III. RESULTS 

Consider a long thin wire that carries a fixed current �0 and 

lies on the j-axis, near a rectangular loop in the �j-plane. The 

magnetic flux through the loop can be calculated analytically, 

and is compared to the numerically computed flux through a 

curvilinear discretization of the rectangle. The smallest mesh 

considered is shown in Fig. 1. To test the efficiency of (8) – 

the “stacking” method applied to stiffness matrix entries – � 

was specified so that the integrand (M��)2 would represent the 

magnetic field intensity due to the current. Figure 2 compares 

the computational time for implementations of the “classical” 

integration and “stacking” methods, for increasing numbers of 

elements. The complete vectorization of the “stacking” 

algorithm across all elements results in a ten-fold reduction in 

cost. In the “classical” implementation, each element is treated 

separately and the algorithm cannot be fully vectorized. Both 

implementations converged to the same level of accuracy. 

 

Fig. 1.  FEM tile mesh consisting of 28 quadratic curvilinear triangles. Larger 

meshes were constructed by repeating the tile in both the �- and j-direction. 

 

Fig. 2.  Comparison of the efficiency computing (M��)2 using both the 

“stacking” and “classical” methods, in terms of computational time. 
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