
Efficient Implementation of the CFS-PML on
Curved Two-Dimensional Domain

A. S. Moura1, R. R. Saldanha2, E. J. Silva2, A. C. Lisboa3 and W. G. Facco4
1Department of Economic Sciences, Federal University of Juiz de Fora, Brazil

2Department of Electrical Engineering, Federal Universityof Minas Gerais, Brazil
3ENACOM - Handcrafted Technologies, Brazil

4General Education - Federal Institute of Espirito Santo, Brazil,

Abstract—The time domain maxwell’s equations are solved
using discrete differential forms. The theory of discrete differen-
tial forms to the numerical solution of boundary value problems
derived from the discretization of Maxwell’s equations. For this
class of problems, an unbounded domain must be truncated by
an absorbing boundary to get a limited computational domain.
The complex frequency shift perfectly matched layer (CFS-PML)
truncates the computational domain by a reflectionless artificial
layer which theoretically absorbs outgoing waves regardless of
their frequency and angle of incidence. This article presents
the formulation of a CFS-PML for di fferential forms in curved
domains. It will be shown that the CFS-PML formulation on
the differential forms framework is implemented through the
directional incidence matrices. Also, curved domains are treated
using the nearest neighbor. The performance in practice of
the proposed technique is presented through some numerical
simulations.

Index Terms—Differential forms, absorbing boundary condi-
tions, incidence matrix.

I. Introduction

In applications to problems of electromagnetic wave, curved
geometries are often faced and needed to be modeled in an
appropriate way. In this context, we have also to consider
the imposition of absorbing boundary conditions. For these
applications, the original perfectly matched layer (PML),pro-
posed byBerenger [1] must be modified in order to suit the
more general form of domain truncation: it must suit curved
geometries.

Another approach that has been investigated is the con-
formal PML (CPML), especially in the worksKuzuoglu and
Mittra [2], andDonderici and Teixeira [3]. In the latter, a con-
formal PML is introduced to the finite element time-domain
for the solution of Maxwell’s equations in time domain.

Moura et al. [4] presents a new formulation to implement
the Cartesian (CFS-PML) for domain truncation in 2-D di-
rectly applied to Maxwell’s equations in differential forms.
It is shown that the proposed method is highly absorptive to
evanescent modes when computing the wave interaction of
elongated structures or sharp corners. The impact of the CFS-
PML parameters on the reflection error is investigated and
optimal choices of these parameters are derived.

This work shows that the CFS-PML implemented using
the first order discretization of Maxwell’s equations [4] can
extended to curved domains. The use in curved domains will

be made by calculating the values of PML parameters within
the PML region using the concept of nearest neighbor.

II. Formulation

Consider a simplicial mesh that represents a two-
dimensional curved domain. Basically, to implement the
curved PML layer we need a procedure to compute the
distance from a point inside PML to its internal boundary.

Let Dp be the set of all points in the PML region which are
nearest neighbors to pointp of the boundaryC. The parameter
d on the entireDp is the largestρ on the points inDp.

d = max{ρi, ρ j, ρk} (1)

whereρi is the Euclidean distance from pointi to point p ∈ C.
Fig.1(a) shows the calculation ofρ for an element of the

PML region and Fig.1 (b) shows the behavior of the ratio
ρ/d. Note that there is a smooth change from zero to one.
By discretizing in time domain and applying techniques to
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Figure 1: (a) Calculation ofρ for an element of the region
PML. (b) Behavior of the ratioρ/d.

calculate the convolution of recursive way, we obtain the
following leap-frog scheme[4]
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where
N1 = (M1( ǫ )+∆tM1 (σ)) (4)

The inverse the matrixN1 can be approximated per a sparse
matrix as shown in [5]. In (2) and (3), the vectorsΦ(t), Ψ(t),
K e(t), andK b(t) are defined as follows

Φ(t) =
[

φ1(t), · · · , φNe(t)
]

(5)



Ψ(t) =
[

ψ1(t), · · · , ψN f (t)
]

(6)

K e(t) =
[

e1(t)/k1, · · · , eNe(t)/kNe

]

(7)

K b(t) =
[

b1(t)/k1, · · · , bN f (t)/kN f

]

(8)

where their coordinates are defined in terms of the PML
parameters, as follows

φi(t) = ξi(t) ∗ ei(t) (9)

ψ j(t) = ξ j(t) ∗ b j(t) (10)
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The PML parameters in Eq.11 are determined by

k = 1+ (kmax− 1)
(

ρ

d

)m
(12)

where kmax are the maximum values ofk at the exterior
boundary. The conductivityσ it is described as

σ = σmax

(

ρ

d

)m
(13)

whereσmax is the maximum conductivity.

σmax = −
m + 1

2η
d ln(R) (14)

whereη is the intrinsic impedance of the medium, andR is
the theoretical reflection coefficient at a normal incidence of
the impinging plane wave andm is the profile order andα is
not scaled and assumed to be constant.

III. Reflection Error

The example computes the fields generated by a current line
which radiates TM polarized waves in free space. To validate
the proposed implementation, we evaluate the existence of
spurious field due to reflection from the CFS-PML boundaries.
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Figure 2: Points on the geometry of which reflection error
were calculated.

The computational geometry showed in Fig.2, is a ellipse
with axis a = 4.2m andb = 7.5m. The PML parameters are
computed using the above expressions form = 2.32765,kmax =

1, R = exp(−8.72447), andα = 1.9922× 10−3. The physical
depth of the PML region isL = 1.5m and it is terminated by
a perfectly electric wall. The domain was discretized with a
mesh with 160,289 triangles and the time step is 0.01583 ns.

To evaluate the performance of the CFS-PML in our im-
plementation, we measure reflection error (in dB) relative to
a reference solution [3]. Fig.2 shows points on the geometry
where the reflection error was calculated. The excitation is

a Ricker pulse (15), located at (x, y) = (0, 0) with a center
frequency of f = 300 MHz given by

G(t) = −2

√

exp(1)
A

exp
(

−A (t − B)2
)

A(t − B) (15)

whereA = 2π2 f 2 and B = 1/ f .

Figure 3: Error of reflection in points A, B, C, D, E, F, G, and
H of geomertry

Fig. 3 shows the error of reflection with respect to time in
the points of geometry. It is observed that the error is below
-40db at all points. This example shows that the proposed
CFS-PML for curved geometry has great performance for the
reflections caused by the absorption region.

IV. Conclusion

In this paper, we presented a simple algorithm that solve
the time dependent Maxwell’s equations in curved domains
truncated by the CFS-PML. In order to validate our imple-
mentation, we evaluate the presence of spurious field due to
reflection from the CFS-PML boundaries. The reflection error
is consistently below -40dB, which shows that the CFS-PML
layer can effectively absorb outgoing waves.
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