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Abstract—In this work we present a method for the exact
computation of guided modes in photonic crystal (PhC) wave-
guides. In contrast to the super-cell method [1], [2], our proposed
approach does not introduce any modelling error and is hence
independent of the confinement of the modes. The approach
is based on Dirichlet-to-Neumann (DtN) transparent boundary
conditions that yield a non-linear eigenvalue problem. For the
solution of this non-linear eigenvalue problem we propose a direct
technique using Chebyshev interpolation. We show numerical
results that demonstrate the convergence of our method.

Index Terms—Photonic crystals, Boundary conditions, Eigen-
values and eigenfunctions, Finite element methods, Nonlinear
equations.

I. Introduction

We consider the problem of finding guided modes in 2D
planar PhCs. For simplicity we restrict our presentation to the
transverse magnetic (TM) mode, but the whole method can
directly be transferred to the transverse electric (TE) mode.
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Figure 1: Sketch of the PhC wave-guide and the periodicity
strip S = S + ∪ C0 ∪ S −, its unit cells C±n with left/right
boundaries Γ±n , its top/bottom boundaries ΣT = Σ+

T ∪ Σ0
T ∪ Σ−T

and ΣB = Σ+
B ∪ Σ0

B ∪ Σ−B, and its periodicity vectors a1 and a2.

Guided modes, which are modes that decay for |x1| → ∞,
are represented by Bloch modes ek that satisfy

−∆ek(x) − ω2ε(x)ek(x) = 0 (1a)

in the infinite strip S = S + ∪ C0 ∪ S − ⊂ R2, c. f. Fig. 1, with
quasi-periodic boundary conditions

ek |ΣT= eik|a2 |ek |ΣB , ∂nek |ΣT= −eik|a2 |∂nek |ΣB , (1b)

where the parameter k ∈ B is the so-called quasi-momentum
in the one-dimensional Brillouin zone B = [−π/|a2 |, π/|a2 |], and
the operator ∂n denotes the normal derivative ∂n = n · ∇ with
the unit normal vector n outward to the domain S . We assume

a piecewise definition of the relative permittivity ε : R2 7→ R+,
taking different values in the holes/rods (grey circles in Fig. 1)
and in the bulk (white).

With the substitution ek(x) = eikx2 u(x), the eigenvalue
problem (1) is equivalent to: find couples (ω2, k) ∈ R+ × B
such that there exists a guided mode u that satisfies

−(∇ + ika2) · (∇ + ika2)u(x) − ω2ε(x)u(x) = 0, x ∈ S . (2)
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Figure 2: Band structure of hexagonal W1 PhC wave-guide.

II. Non-linear eigenvalue problem using DtN operators

A. Definition of the DtN operators

In order to define the DtN operators, let us introduce Dirich-
let problems in the infinite half-strips S ±: for any Dirichlet
trace ϕ on Γ±0 find u± ≡ u±(x;ω, k, ϕ) such that

−(∇ + ika2) · (∇ + ika2)u± − ω2ε(x)u± = 0, x ∈ S ±, (3a)
u± |Γ±0 = ϕ. (3b)

Then we define the DtN operators Λ±(ω, k) as linear mappings
of the Dirichlet trace ϕ to the Neumann trace on Γ±0

Λ±(ω, k)ϕ = ∓∂1u±(· ;ω, k, ϕ) |Γ±0 . (4)

With this definition of the DtN operators the problem (2)
is equivalent to: find couples (ω2, k) ∈ R+ × B such that there
exists a non-trivial u that satisfies

−(∇ + ika2) · (∇ + ika2)u(x) − ω2ε(x)u(x) = 0 (5a)



in the defect cell C0 with DtN transparent boundary conditions

−∂1u(x) = Λ+(ω, k) u(x), x ∈ Γ+
0 , (5b)

∂1u(x) = Λ−(ω, k) u(x), x ∈ Γ−0 . (5c)

In contrast to (2) this eigenvalue problem is non-linear but
posed on the bounded domain C0.

B. Characterization of the DtN operators

Let us introduce the propagation operator P±(ω, k) that
maps a Dirichlet trace ϕ on Γ±0 to the Dirichlet trace of
the half strip solution u± of (3) on Γ±1 , i. e. P±(ω, k)ϕ =

u±(· ;ω, k, ϕ) |Γ±1 . The propagation operator P±(ω, k) is the
unique solution of the quadratic equation

T ±10(P±)2 + (T ±00 + T ±11)P± + T ±01 = 0 (6)

with spectral radius strictly less than 1, where the operators
T ±i j = T ±i j (ω, k) are defined by T ±i j (ω, k)ϕ = ∂nu±i (· ;ω, k, ϕ)) |Γ±j
for any Dirichlet trace ϕ on Γ±0 , where u±i ≡ u±i (x;ω, k, ϕ), solve
the Dirichlet cell problems

−(∇ + ika2) · (∇ + ika2)u±i − ω
2ε(x)u±i = 0, x ∈ C±1 , (7a)

u±i |Γ±j = δi j ϕ. (7b)

Then the DtN operators Λ±(ω, k) are given by

Λ±(ω, k) = T ±00(ω, k) + T ±10(ω, k)P±(ω, k). (8)

III. Discretization

For the discretization of this problem we use high-order
finite elements on quadrilaterals with curved edges as provided
by the C++ library Concepts [5].

In discrete sense the operators T ±i j are matrices T±i j whose
number of columns/rows is equal to the number of degrees
of freedom on the boundaries Γ±. Consequently, also the
propagation operators P± are — in discrete sense — equiv-
alent to matrices P± of the same size as T±i j satisfying the
quadratic, matrix-valued equation of the form (6) and having
only eigenvalues of magnitude strictly less than 1. Finally,
interpreting Eq. (8) in discrete sense, the DtN operators Λ±

can be understood as matrices D±.
These DtN matrices D± are added as dense blocks to the

stiffness, mass and advection matrices that correspond to the
left hand side of (5a). This yields the non-linear, matrix-valued
eigenvalue problem

N(ω, k) u = 0. (9)

IV. Linearization of the non-linear eigenvalue problem

The non-linear, matrix-valued eigenvalue problem (9) can
be linearized using the Chebyshev interpolation [6]. This lin-
earization can be realized according to both, the ω-formulation
and the k-formulation. If we choose the k-formulation for
example, we have to fix — additionally to the value of the
frequency ω — an interval of k that lies entirely inside the
bandgap. In this interval we place d Chebyshev nodes to
obtain a polynomial eigenvalue problem of degree d which
can be linearized yielding a linear eigenvalue problem whose

size is d-times larger than the original, non-linear eigenvalue
problem. However, thanks to the special properties of the
Chebyshev interpolation, we only have to invert a matrix of
the same size as the original problem, if we apply a shift and
invert strategy to the linear eigenvalue problem.

V. Numerical results
Let us now present numerical results of our proposed DtN

method applied to a W1 PhC wave-guide with hexagonal
lattice and holes of relative radius r/|a2 = 0.31 filled with air
(ε = 1) in a homogeneous and isotropic dielectric material
of relative permittivity ε = 11.4. We study the TE mode for
which we plotted the band structure in Fig. 2. The computation
was performed using a polynomial degree of p = 7 and taking
d = 10 Chebyshev nodes.
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Figure 3: Convergence of the error of the Chebyshev lineariza-
tion with respect to the number of Chebyshev nodes.

The error of the Chebyshev linearization is presented in
Fig. 3, where the mean error 1

200
∑200

i=1 |kCheb,i − kref,i| of the
eigenvalues kCheb,i using the Chebyshev interpolation of the
k-formulation in the reduced Brillouin zone B = [0, π] over a
sample of 200 frequencies in the band gap [0.22 ·2π, 0.28 ·2π]
is shown. The reference solutions kref,i are computed using
the Newton method [4] applied to the non-linear eigenvalue
problem (9) of same polynomial degree p = 7.
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