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Abstract—The ideas of div- and curl-conforming approxima-
tions of electromagnetic fields have long been established in
computational electromagnetics but have so far been confined
to edge- and face-element methods. We apply them in a com-
pletely different area: effective parameters of electromagnetic
metamaterials, periodic dielectric/metal structures whose lattice
cell size is smaller than, yet comparable with, the vacuum
wavelength. The proposed dual-interpolation methodology allows
one to distinguish between surface and bulk parameters. The
homogenization procedure involves a basis set of fields that in this
paper is computed using finite difference time domain algorithms.

Index Terms—Metamaterials, Effective Material Parameters,
Homogenization, Surface Waves, Periodic Structures, Bloch
Waves, Finite Difference Time Domain

I. Introduction

Electromagnetic metamaterials – periodic dielectric/metal
structures whose lattice cell size is smaller than, yet com-
parable with, the vacuum wavelength – have been the sub-
ject of extensive research due to remarkable applications
proposed in the literature [1]. One critical question is the
definition and computation of effective material parameters.
In the homogenization limit, i.e. when the lattice cell size
a tends to zero relative to the vacuum wavelength, solid
mathematical and physical theories are available and can be
applied in electromagnetic computation. However, to produce
nontrivial physical effects, the lattice cell size must constitute
an appreciable fraction of the wavelength [2]. Hence a non-
asymptotic homogenization theory is called for [3], [4], [5].

Such a theory involves mathematical ideas of div- and curl-
conforming interpolations, discrete Hodge operators and Tre-
fftz approximations that are well established in the Compumag
community [6], [7], [8], [9] but until recently have not been
applied to homogenization. In our methodology [4], [5], one
defines the macroscopic E and H fields by curl-conforming
interpolations of a set of basis functions in the material,
while the B and D fields are obtained by div-conforming
interpolations.

Among other things, the new methodology allows one to
distinguish between the effective material parameters in the
bulk and at the surface of a metamaterial sample or, speaking

more broadly, to define and compute these parameters as
functions of position. This has implications, in particular,
for parameter retrieval, a common procedure in design and
modeling of metamaterials. This procedure involves analysis
of transmission/reflection of plane waves through a slab of
several elementary layers. The number of layers can affect the
effective parameters (EMPs), but the account of this effect has
so far been heuristic.

II. Statement of the Problem

In practice, it is often convenient to work with plane-
parallel slabs of identical unit cells arranged on a cubic lattice.
The lattice is assumed infinite (or sufficiently wide) in two
directions, say, x and y, and finite in the third direction, z. If
illumination-independent effective material parameters (EMPs)
can be defined for this structure, then (approximate) analytical
results for its transmission and reflection coefficients can be
easily obtained. The effective medium description of the slab
is critical to many proposed applications, e.g. the superlens.
In this work, we investigate the effects of the finite width of
the slab that in practice often contains only a small number N
of elementary cell layers.

For a sufficiently thick slab (N ≫ 1), EMPs are expected
to be independent of N, but for N ∼ 1 this is not necessarily
so. Nevertheless, EMPs are frequently introduced for just a
few layers or even for a single layer. This raises the question
of finite width effects on homogenization. Recent simulations
suggest that these effects are not particularly strong [10], [11].
At the same time, some experiments have demonstrated critical
sensitivity to the number of layers [12]. So far, these findings
are largely heuristic. It is desirable, therefore, to study the
finite width effects mentioned above more systematically.

III. EffectiveMaterial Parameters

In the recently developed non-asymptotic homogenization
theory [3], [4], [5], the electromagnetic fields inside the sample
are approximated by a suitably chosen set of basis functions
(modes). The four coarse-grained (macroscopic) EM fields E,
H, D, B are defined as curl-conforming and div-conforming
interpolations of the microscopic fields e, h, d and b, so that



Figure 1: (a)–(c): The diagonal elements of the EMPs for a
lattice of gold spheres with the radius of r0 = 20 nm and unit
cell size a = 80 nm. Solid line: the Lewin theory; circles:
EMPs for the surface unit cell with N = 5; triangles and
diamonds: EMPs for the center unit cell with N = 9 and N = 5
respectively. (d): the in-the-basis error γ.

the former satisfy Maxwell’s equations and interface boundary
conditions [3], [4], [5]. The material tensor constitutes, by
definition, a linear relationship between the (E,H) and (D,B).

We have generated the basis set by illuminating the sample
with a set of plane waves with different polarizations and
traveling in different directions. The simulations made use of
the publicly available finite-difference time-domain (FDTD)
package MEEP [13]. Perfectly matched layers (PMLs) were
introduced at the top and bottom (in the z direction) of the
slab, while Bloch-periodic boundary conditions were applied
in the x and y directions.

IV. EffectiveMaterial Parameters of a Cubic Lattice
of Spherical Gold Particles

A cubic lattice of spherical gold particles with the radius of
r0 = 20 nm is analyzed; the cell size a = 80 nm. The uniform
grid size of FDTD is set to δ = 2.857 nm and the simulation
time is 8400 (δ/2c), where c is the speed of light in free space.
Fig. 1 compares the EMPs obtained as described above to the
results of Lewin’s theory [14]. The in-the-basis error γ [4],
[5] for the center unit cell at all frequencies is smaller than
1.2% for N = 5. However, a large discrepancy between the
EMPs calculated for a center cell (diamonds) and a surface
cell (circles) can be seen in Fig. 1(a). This result illustrates
the influence of surface waves [15]. Moreover, the agreement
of the EMPs in the center cell for different numbers of layers,
N = 9 and N = 5, indicates rapid convergence of the EMPs
with N.

V. Conclusion

We apply a new homogenization theory of metamaterials
based on div- and curl-conforming interpolations of a basis
set of fields. This theory provides a rigorous mathematical
and physical framework for defining parameters of materials
whose lattice cell size is comparable with the wavelength. The
methodology also allows one to distinguish between surface
and bulk parameters of periodic structures. The basis set was
computed via full-wave FDTD simulations. To analyze the
dependence of parameters on the thickness of a metamaterial
sample and to study theoretically the impact of surface waves,
a rigorous coupled-wave analysis was used to disentangle the
surface waves from the Bloch waves in the bulk. Details will
be provided in the extended paper.
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