
Abstract—An improved vector play model for magnetic 

hysteresis materials is proposed, and its required parameters are 

identified from input major hysteresis loop. Validation results 

show that this new vector hysteresis model improves the accuracy 

of core loss computation not only for rotating fields, but also for 

alternating fields compared with the ordinary vector play models. 

The presented model has been successfully implemented in 2-

dimensional (2D) and 3-dimensional (3D) transient finite element 

analysis (FEA). Some application results from the 2D and 3D 

transient FEAs are presented. 

Index Terms—Magnetic hysteresis, modeling. 

I. INTRODUCTION 

To predict the magnetization behavior for isotropic 

magnetic materials with hysteresis in 2-dimensional (2D) or 3-

dimensional (3D) transient finite element analysis (FEA), it 

has been realized that the vector play model [1]-[4] is more 

computationally efficient than various vector Preisach models 

[5]-[7]. However, the ordinary vector play model does not 

obey the rotational loss property that the magnetic hysteresis 

loss of any applied rotating magnetic field tends to become 

zero when the magnitude of the applied rotating magnetic field 

becomes saturated, but not the infinity [5], [8]-[9]. Some 

modified vector play models have been developed to satisfy 

the loss property [1]-[2]. However, their applications are 

limited in practice due to the difficulty in parameter 

identification. 

This paper presents a vector hysteresis model using 

improved vector play operator to predict the magnetization 

behavior for isotropic magnetic materials with hysteresis. All 

required parameters of the model can be directly identified 

from the major hysteresis loop. This model not only satisfies 

the rotational loss property, but also improves the accuracy of 

the core loss computation at alternating fields. 

II. VECTOR PLAY MODEL 

A. Ordinary Vector Play Model 

With the vector play model, the evaluation of 

magnetization m from the applied field h is performed in two 

steps. The first step is to calculate, hre, the vector play 

operator, by 
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where r, representing the intrinsic coercivity, is a given 

parameter, h is the applied field, and hre0 is the initial value of 

hre. The second step is to derive magnetization m from 

rererean hhM /)( hm ⋅=   (2) 

where Man(hre) is the anhysteretic curve, and hre is the absolute 

value of hre. 

The physical understanding of (1) is: if the applied field h 

is decomposed into two components, the reversible and 

irreversible components, then the vector play operator 

represents the reversible component hre, and h−hre stands for 

the irreversible component hir.   

The vector play operator of (1) can be illustrated by the 

vector diagram as shown in Fig. 1. 

Draw a circle at the tip of vector hre0 with radius r. If the 

tip of the applied field h falls inside the circle, keep the 

reversible component unchanged, as shown in Fig. 1(a); 

otherwise,  get hir in the direction of h–hre0 with length of r, 

and then let hre = h–hir, as shown in Fig. 1(b). 

B. Improved Vector Play Model 

In Fig. 1, if the applied field rotates, it can be proved that at 

the steady state, the irreversible component hir will be 

perpendicular to the reversible component hre. In the ordinary 

model, the magnitude of hir is constant no matter how large the 

applied field is, which means m, in the same direction of hre, 

will always lag h a certain angle. Therefore, the ordinary 

vector play model does not satisfy the rotational loss property. 

The model can be modified to satisfy the rotational loss 

property by defining r as a function of the reversible field 

component hre with r = 0 when hre ≥ hs, here hs is the saturation 

field. The vector play operator then becomes 
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Fig. 2 compares the improved play operator with the 

ordinary one. 

Since r in (3) depends on hre, an iterating process is 

required to solve (3). An efficient iteration algorithm with 

optimized relaxation factor will be introduced in the full paper. 

III. PARAMETER IDENTIFICATION 

The parameters for the improved vector play model, 

including Man(hre) and r(hre), are identified from the major 

hysteresis loop. The major hysteresis loop consists of the 

ascending branch Masd(h) and the descending branch Mdec(h). 

The ascending, or descending, curve can be directly obtained 

from each other based on the odd symmetry condition, and 

therefore, only one branch is required from input. 

If the inverse functions of Masd(h) and Mdsc(h) are denoted 

as Hasd(m) and Hdsc(m), respectively, as shown in Fig. 3, then 
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Fig. 1.  Vector diagram for vector play operator 
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Fig. 2.  Comparison between the ordinary and improved play operators 
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Fig. 3.  Magnetic hysteresis loop for parameter identification 
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Finally, one obtains 
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IV. VALIDATION AND APPLICATIONS 

A measured major loop, cited from [10], is shown in Fig. 

4, compared with the simulated major loop using the proposed 

model. Since the parameters are identified directly from the 

measured major loop, the simulated results are identical with 

the measured data. The major-loop energy loss per cycle 

simulated by the improved play model, together with that by 

the ordinary play model, is compared with the measured data 

in Table I. The steady-state rotational loss simulated by the 

improved play model is compared with that by the ordinary 

play model in Fig. 5.  

The proposed model has been implemented in 2D and 3D 

transient FEA solvers, some 2D and 3D applications will be 

presented in the full paper. 
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Fig. 4.  Simulated major loop by the improved play model compared with the 

measured one 
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Fig. 5.  Rotational loss varying with the magnitude of the rotating flux density 

 

TABLE I 

MAJOR-LOOP ENERGY LOSSES AT ALTERNATING FIELDS  

 Energy loss [J/m^3] 

Simulated by ordinary play model 426.7 

Simulated by improved play model 416.5 

Measured 416.5 
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