
 
Abstract— In this paper the authors propose a modified 

version of the hybrid FEM-RBCI method to solve scalar 
scattering problems, such as 2D electromagnetic and 3D acoustic 
ones. In the modified method, called FEM-SRBCI, the 
integration surface coincides with the truncation one, so that the 
integral equation becomes singular. 

Index Terms—Scattering, Computational electromagnetics, 
Finite element methods. 

I. INTRODUCTION 
In order to solve electromagnetic scattering problems, the 

authors have devised a hybrid method, called FEM-RBCI 
(Finite Element Method − Robin Boundary Condition 
Iteration) [1-5]. FEM-RBCI couples a differential equation, 
which governs the interior problem, with an integral one 
which makes use of the free-space Green function and 
expresses the unknown boundary condition on the fictitious 
truncation boundary. In [1] the authors have shown that only 
the use of suitable Robin boundary conditions avoid internal 
resonances, whatever the frequency of the incident wave. 

In FEM-RBCI the truncation boundary includes the 
integration surface, which on its turn includes the scatterer. In 
this way no singularity arises in the integral equation. This 
advantage is balanced by the drawback of the presence of 
finite elements in between the truncation and integration 
surfaces. 

This paper presents a modified version of the FEM-RBCI 
method in order to eliminate this drawback. In this version the 
truncation and integration surfaces are coincident, so that the 
integral equation becomes singular; from this the name FEM-
SRBCI (Singular RBCI).  

II. THE FEM-SRBCI METHOD FOR SCATTERING 
 Consider a system of conducting and/or dielectric objects, 
infinitely extended in the z-direction, surrounded by free 
space. The system is radiated by a given time-harmonic 
electromagnetic wave Einc, E-polarized along the z-axis. A 
scattered field Escat is excited extending to infinity. The total 
field E (outside the scatterers E=Einc+Escat) satisfies the 2D 
scalar Helmholtz equation: 
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where, µr and εr are the relative magnetic permeability and 
electric permittivity, respectively, and k0 is the free-space 
wavenumber. Homogeneous Dirichlet conditions hold on the 
perfect  conductor  surfaces  ΓC,  if any.  Moreover  Escat  must 

 
satisfy the Sommerfeld radiation condition at infinity. 
 In order to compute the field inside the penetrable objects 
and in the proximity of the perfect conductors (PEC), they are 
enclosed in a fictitious boundary, ΓF, where a Robin condition 
is initially imposed: 
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the normal derivative being calculated in the outward 
direction. By discretizing the domain D, delimited by ΓC and 
ΓF, by means of Lagrangian finite elements and applying the 
Galerkin method, the following set of algebraic equations is 
obtained: 
        BΨΑΕ =                                           (3) 
where  E and Ψ are the vectors of the nodal values of E and ψ, 
respectively, A is an FEM global matrix, and B is a 
rectangular sparse matrix of geometrical coefficients. 
 The field E in a point r on ΓF can be expressed by means of 
the Green formula: 
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and hence: 
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where γ is the angle of the external domain at point r, n' is the 
outward normal unit vector at point r' and G is the 2-D free-
space Green’s function: 
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second kind. 
In the FEM approximation, relation (5) is rewritten as: 

       HEΨCΨ += inc                               (7) 
where C is a diagonal matrix containing the α/2π coefficients 
and H is a rectangular matrix in which null columns appear 
for the nodes not belonging to the elements having a side 
lying on ΓF. For the computation of the coefficients in matrix 
H, the following integrals are computed: 
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where αi is the shape function of the i-th node Pi and Sk is the 
k-th side of the finite elements lying on ΓF. If node Pi does not 
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belong to side Sk, Gauss integration is used; otherwise 
analytical (or numerical) integration formulas are used [6]. 
 Equations (3) and (7) constitute a linear algebraic system 
which can be efficiently solved with a block Gauss-Seidel 
iteration scheme: i) at the beginning the vector Ψ is guessed 
arbitrarily (a good choice is Ψ=C-1Ψinc); ii) equation (3) is 
solved for E; iii) another guess for Ψ is obtained by means of 
(7); iv) if convergence is reached the procedure stops; 
otherwise it goes back to ii). 
 Computational efficiency is obtained by fully exploiting the 
following points in implementation: a) matrices A, B, C and 
H do not change during the iterations, so they are computed 
only once, at the beginning of the procedure; b) equation (3) 
may be solved by means of standard solvers, which exploit the 
matrix A sparsity and symmetry; c) by suitably placing ΓF 
around the PEC scatterers a small extension of free-space has 
to be meshed; d) the end-iteration test is conveniently 
restricted to the truncation boundary ΓF. 

III. FEM-SRBCI FOR 3D PROBLEMS 
The FEM-SRBCI method described in Sect. II can be easily 

extended to 3-D problems. Of course the 3-D version does not 
apply to electromagnetic phenomena, since in this case both 
the equation and the Robin boundary condition change in a 
vectorial manner [4]. However there exist several kinds of 3-D 
physical phenomena, such as acoustic ones, which are 
governed by the scalar Helmholtz equation and to which the 
FEM-SRBCI method is fully applicable. 
 In the 3-D version of the procedure the main changes are 
concerned with the Green’s function to be used, which in this 
case is given by: 
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 Of course ΓF is now a closed surface, which is seen as 
constituted by finite element faces, that is, triangles [7] or 
quadrangles for tetrahedral or brick elements, respectively. 

IV. NUMERICAL EXAMPLES 
Two numerical examples are given. The first concerns a 

plane wave lighting a perfectly-conducting circular cylinder, 
of radius RC=2.25λ, coated with a lossy dielectric (εr=1.5-j0.8, 
µr=2-j) of thickness a=0.25λ. A circular ΓF was selected 
coinciding with the scatterer surface. For symmetry reasons 
only half of the domain D was discretized with a mesh of 
1300 2nd-order triangles (130 subdivisions along ϕ, 5 along 
r). Assuming an end-iteration tolerance of 1%, the procedure 
converges in 5 iterations. The numerical solution was 
compared with the analytical one: the relative error was 0.5%. 
Similar results were also obtained in the H-polarized case. 

 The second example regards a multiple scatterer 
composed of a dielectric (εr=1-j0.2, µr=2-j) circular cylinder 
(of radius R=0.8λ) and a perfectly-conducting triangular 
cylinder. An E-polarized plane wave comes from the left. The 
fictitious boundary ΓF was selected as constituted of two 
closed curves: one coincides with the surface of the circular 
cylinder,  and  the  other  is  homologous  to  the  triangular 
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Fig. 1 – Contours of the real (a) and imaginary (b) parts of E. 
 
 

cylinder. A mesh of 408 2nd-order triangles was adopted to 
discretize half of the system. The procedure converged in 8 
iterations. Figs. 1.a and 1.b show the contours of the real and 
imaginary parts of the electric field, respectively. The solution 
was compared with another one obtained by FEM-RBCI, in 
which a single fictitious boundary enclosed the two scatterers. 
a relative error of 0.4% was observed. 

The computations were performed by means of ELFIN, a 
large FEM code developed by the authors for electromagnetic 
CAD research [8]. More details and example will be provided 
in the full paper. 
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