
Abstract—Several 3D and 4D space-time grids are compared 
for electromagnetic wave computation by space-time finite 
integration method. An improved approximation of constitutive 
relation is proposed to suppress unphysical wave-reflection. The 
computational accuracy resulting from several space-time grids 
are numerically compared.  

Index Terms—Computational electromagnetics, finite 
difference methods, time domain analysis. 

I. INTRODUCTION 
The finite integration (FI) method [1]-[4] achieves time-

domain electromagnetic wave computation on unstructured 
spatial grid. Similarly to the FDTD method, the FI method 
uses a uniform time-step, which is restricted by the CFL 
condition with respect to the smallest spatial grid size. Refs. 
[5], [6] developed a space-time FI method to introduce non-
uniform time-steps on 3D and 4D space-time grids. However, 
it was found that nonuniform spatial grid construction may 
cause unphysical wave-reflection. Refs. [7] and [8] proposed 
improved 3D and 4D space-time grids to suppress the 
unphysical wave-reflection due to the grid nonuniformity. 
This study proposes another space-time grid with an improved 
expression of constitutive relation based on a vectorial 
correction. The computational accuracy resulting from several 
space-time grids are compared.  

II. FINITE INTEGRATION METHOD ON A SPACE–TIME GRID 
 The coordinate system is denoted by (ct, x, y, z) = (x0, x1, 

x2, x3) where c = 1 / √(ε0μ0), and ε0 and μ0 are the electric and 
magnetic constants. The integrated form of Maxwell equations 
are given as: 

 0
p
=∫ Ω∂F , ∫∫ ΩΩ∂

=
dd
JG               (1) 

 F = − Σi=1
3 Eidx0dxi + Σj=1

3 Bjdxkdxl, 
 G = Σi=1

3 Hidx0dxi + Σj=1
3 Djdxkdxl, 

 J = cρdx1dx2dx3 − Σj=1
3Jjdx0dxkdxl         (2) 

where (B1, B2, B3) = cB and (D1, D2, D3) = cD; (j, k, l) is a 
cyclic permutation of (1, 2, 3); Ωp and Ωd are hypersurfaces in 
space-time. The boundaries ∂Ωp and ∂Ωd are represented by 
the faces of primal and dual grids in the FI method. The 
electromagnetic variables are defined in the FI method as: 

 f = ∫SpF , g = ∫SdG               (3) 
where Sp and Sd are the faces of primal and dual grids. 

The Hodge dual grid [6] is used to express the constitutive 
equation simply as: 

 ∫Sdcrdx0dxj / ∫Spdxkdxl = −∫Sddxkdxl / ∫Spcrdx0dxj = a   (4) 
where cr = 1 / √(εrμr), a is a constant determined for each pair 
of Sp and Sd; εr and μr are the specific permittivity and 

permeability. Thereby, f = Zg / a is obtained, where Z = 
√(μrμ0/εrε0) is the impedance.  

III. 3D-SPACE-TIME GRID WITH 2D SPACE 
Fig. 1 illustrates space-time grids proposed in this paper, 

where domains (I) and (II) have uniform time-steps Δx0 and 
Δx0/2, respectively; domain (III) is the connecting domain. 
Figs. 2(a) and (b) show the grid structure of corner parts of 
domain (III) examined in [5] and [8], respectively. The former 
grid causes unphysical wave-reflection because of spatial 
irregularity whereas the latter suppresses the unphysical wave 
reflection using an improved constitutive relation. However, 
inaccuracy due to the corner structure was not removed 
completely. The grids shown in Fig. 2(a), 2(b) and Fig. 1 are 
called types A, B and C, respectively, in this article.  
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Fig. 1. Space-time grid (solid line: primal grid, dashed lines: dual grid).  
 
Type C grid has dual edges that are not orthogonal to 

corresponding primal faces as shown in Fig. 1. This study 
examines two types of constitutive relations described by Eqs. 
(5) and (6). 

 exi = εrε0 dxi / Δl ,  eyi = εrε0 dyi / Δl  (i = 1, 2)    (5) 
 exi = εrε0 (dxi + dxy/2) ,  eyi = εrε0 (dyi + dxy/2)  (i = 1, 2)  
                      (6) 

where d and e are the electric flux and the integration of 
electric field given by (3), respectively. Based on the vectorial 
correction illustrated in Fig. 3, (6) gives more accurate 
approximation of constitutive relation than Eq. (5). The 
extended paper will discuss the numerical stability of space-
time FI scheme based on the eigenvalue analysis of impedance 
matrix with relations (5) and (6). 
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Fig. 2. Corner of Domain (III): (a) type A grid and (b) type B grid.  
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Fig. 3. Corner of domain (III) of type C grid: (a) variables and (b) vectorial 

correction.  
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(a)              (b) 
Fig. 4. Discrepancy of B3 between space-time FI method and FDTD method: 
(a) type A grid, and (b) type C grid with (9). 

 
Fig. 4 portrays distributions of discrepancy ΔB3 between 

B3 obtained in the same way as in [8] by the FDTD method 
and the FI method with type A and C grids. The type A grid 
yields numerical error whereas the numerical error is 
suppressed by the type C grid with (6) type relation. The 
comparison with the type B grid and another grid [7] will be 
reported in the extended paper.  

IV. 4D-SPACE-TIME GRID WITH 3D SPACE 
Fig. 5 illustrates 4D space-time grids of type C at the 

corner of domain (III). A wave propagation is simulated 
similarly to [6], where electromagnetic wave is scattered by a 
cubic pore with εr = 1 surrounded by dielectric with εr = 5. 
Figs. 6(a)-(d) portray distributions of B3 given by (a) the 
FDTD method (b) the space-time FI method using type B grid 
with correction similar to (6), (c) with type C grid and (5), and 
(d) with type C grid and (6). The FDTD method uses the same 
uniform spatial grid and time-step as in domain (II) and 
requires about two times as much computation time as the 
space-time FI method. Compared with Fig. 6(a), small 
inaccuracy is observed behind the pore in Fig. 6(b) even with 
correction similar to (6). The type C grid with (6) achieves 
accurate computation as in Fig. 6(d). The numerical instability 
is not observed even after x0 = 105Δx0. The comparison with 

another 4D grid [7] with 3D corners of domain (III) will be 
reported in the extended paper.  
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Fig. 5. 4D Space-time grid of type C where solid and dashed lines represent 

primal and dual grids: (a) primal grid, and (b) primal and dual grids.  
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Fig. 6. Scattering of B3: (a) FDTD method, (b) type B grid with correction, (c) 
type C grid with relation (5), and type C grid with relation (6). 
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