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Abstract—The electromagnetic properties of frequency selec-
tive surfaces (FSS) are often calculated using integral equations.
The metal strips of an FSS are usually modeled based on the
assumption that the electric field is constant in the metal with
respect to its depth. This assumption is valid as long as the
thickness of the metal strip is significantly shorter than the skin
depth. If this condition is not applicable, the discretization of
the volume of the metal strip is necessary. In this paper we
propose to use the impedance type boundary condition to avoid
the volumetric discretization when the thickness of the metal
strip is comparable to the skin depth. We will show that using
the proposed method the accuracy of the modeling is increased
while the number of unknowns remains very low compared to
the full volumetric discretization.

Index Terms—Frequency selective surfaces, Impedance type
boundary conditions, Integral equations

I. Introduction

Frequency selective surfaces (FSS) are periodic metallic
structures formed on a dielectric layer. They are often usedto
filter the electromagnetic waves with respect to the frequency
or to the angle of incidence. Some possible FSS structures are
shown in Fig. 1 [1]. The thickness of the metal is usually con-
siderably smaller than the wavelength of the electromagnetic
field around, while the periodicity of the metallic pattern is
in the range of the wavelength. For the design of such FSS,
fast analysis methods are required, that is why it is worth to
consider numerically cheap approximate methods.

In this paper first we consider the traditional method using
integral equations when the metallic parts are modeled as
surface currents [2], [3]. This method is very efficient, however
it might fail when the thicknesses of the metallic parts are
comparable to the skin depth. In such cases the volumetric
discretization of the metallic parts are needed to obtain accu-
rate results. In this contribution we propose an approximate
method based on the impedance type boundary condition for
the cases when the thicknesses of the metallic parts are in the
range of one to several skin depths. This method can serve as
a trade-off between accuracy and numerical expenses. In the
following we describe the proposed method and compare its
results to those obtained by the traditional method and by a
rigorous finite element method (FEM) analysis.
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Figure 1: Examples for FSS arrangements

II. Calculation methods based on integral equations

A. Traditional method: metal as surface current

Consider the configuration shown in Fig. 2. Here we can
see a conductor that is deposited on a surface separating two
dielectric materials with permittivitiesε1 andε2. The thickness
of the conductor isd, the surfaceS occupied by the metal
in the xy plane is independent ofz when 0 < z < d. The
conductivity and the permeability of the conductor isσ and
µ0, respectively.

The electric field~E = ~Ei+ ~E s can be obtained as the sum of
an incident (~Ei) and a scattered (~E s) fields. ~E s is generated by
the currents~J flowing in the metal. This can be written using
the dyadic Green’s functionsG(x, y, z|x′, y′, z′) transforming
the electric current distribution into the electric field [4] as,

~E s =

∫

V
G(x, y, z|x′, y′, z′)· ~J(x′, y′, z′)dV ′. (1)

If the λ ≫ d, where λ = 2πc
ω
√
ε1

is the wavelength of the
electromagnetic field in thez > 0 region (c is the speed of light
in vacuum andω is the angular frequency of the excitation)
we may use the following approximation,

G(x, y, z|x′, y′, z′) ≈ G(x, y, z|x′, y′, z′ = 0) = G0(x, y, z|x′, y′),
0 < z′ < d. (2)
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Figure 2: Schematic drawing of the investigated arrangement
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If the thickness of the metald ≪ δ (whereδ =
√

2
ωσµ0

is the
skin depth in the metal), the current density can be considered
to be homogeneous with respect to thez coordinate direction,
i.e. ~J(x, y, z) ≈ ~J0(x, y) where ~J0 lies in thexy plan. Using (2)
and this assumption, (1) is simplified as,

~E s = d
∫

S
G0(x, y, z|x′, y′)· ~J0(x′, y′)dS ′. (3)

By introducing the surface current density~Js(x, y) = ~J0(x, y)d
that is assumed to be concentrated on thez = 0 surface, and
understanding that the continuity of~Et (subscriptt stands for
the tangential component of the vector) at the metal interfaces
implies thatσd

(

~E s
t +
~Ei

t

)

= ~Js we can arrive to the following
integral equation,

~Js = σd ~Ei
t + n̂ ×

[

σd
∫

S
G0· ~JsdS ′

]

× n̂, x, y ∈ S , (4)

where n̂ is the normal vector of the surface of the metal.
The solution of (4) (done by, e.g., the Method of Moment)
will provide the unknown surface current distribution~Js,
consequently the electromagnetic field can be obtained in the
whole arrangement.

B. Proposed method: metal as impedance type boundary
condition

Here we approximate the currents inside the metal as,

~J(x, y, z) ≈ ~J+(x, y)e−γz + ~J−(x, y)eγz, (5)

where ~J+ and ~J− lie in the xy plan andγ =
√

jωσµ0. This
assumption can be accepted as long as the dimensions of the
metal in thexy plane is considerably larger than the skin depth
δ. Note that –contrary to the case shown above– the thickness
of the conductor might be in the range of the skin depth.

Taking again the approximation (2) and substituting this and
(5) into (1), the integration with respect toz′ can be evaluate
analytically. We will obtain,

~E s =

∫

S
G0·
[

1− e−γd

γ
~J+(x′, y′) +

eγd − 1
γ
~J−(x′, y′)

]

dS ′. (6)

Having this approximate expression and considering the con-
tinuity of ~Et at the top (z = d) and at the bottom (z = 0)
surfaces of the metal, we can calculate the currents as,

σ~Et |z=0= ~J
+ + ~J− = σ~Ei

t |z=0 +σ~E
s
t |z=0, x, y ∈ S , (7)

σ~Et |z=d= ~J
+e−γd + ~J−eγd = σ~Ei

t |z=d +σ~E
s
t |z=d, x, y ∈ S . (8)

If we put the expression (6) into (7) and (8), we obtain two
coupled integral equations that can be solved for the unknowns
~J+(x, y) and ~J−(x, y). The integral equations are solved using
the Method of Moment, consequently the electromagnetic field
can be described in the whole arrangement.

If we assume thez = d and z = 0 planes like thez + 0 and
z−0 sides of thez = 0 interface, than (7) and (8) are similar to
the application of the impedance type boundary condition [5],
[6] in the regions of thez = 0 plane where metal is deposited.
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Figure 3: Ratio of the illuminating (E0) and transmitted (E1)
fields for the three methods. FEM: reference solution, Model
A: traditional method discussed in II-A, Model B: proposed
method described in II-B

III. Numerical results

Numerical results obtained by the two methods described
above are compared for the 2D geometry shown in Fig. 1(a).
The widths, the period and the thickness of the metal stripes
are 2 cm, 5 cm and 2 mm, respectively. The relative permittivity
of the regions above and below the metal strips are assumed
to be 1. The excitation (~Ei) is an x-polarized plane wave
traveling to the−z direction, the frequency of this is 3 GHz
(the wavelength isλ = 10 cm). The conductivity of the metal
is varied to simulate metals with different skin depths. As a
reference solution, rigorous analysis of the configurationby
FEM is carried out using the full discretization of the metal.

In Fig. 3 the ratio of the electric fields of the illuminating
plan wave (E0) and the x component of the electric field
transmitted far to the regionz < 0 (E1) are shown. One can
see that in the case whend < δ/2 (δ/d > 2) all methods
provides the same result. However, for the cases whend > δ/2
the modeling of the metals with surface currents gives poor
result while the proposed method still provides acceptable
approximation of the transmitted field.
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