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Abstract—The numerical modeling of nanoscale electron de-
vices needs the development of accurate and efficient numer-
ical methods, in particular, for the numerical solution of the
Schrödinger problem. If Finite Elements methods allow an
accurate geometric representation of the device, they lead to
a discrete counterpart of Schrödinger problem in terms of a
computationally heavy generalized eigenvalue problem. Exploit-
ing the geometric structure behind the Schrödinger problem, we
will construct a numerically efficient discrete counterpart of it,
yielding to a standard eigenvalue problem. We will also show how
the two approaches are only partially akin each other even when
lumping is applied.

Index Terms—nanoelectronics, semiconductor device modeling,
Schrodinger equation, finite elements method

I. Introduction

Modern microelectronics and optoelectronics use semicon-
ductor materials structured at truly nanometric dimensions [1];
as an example, the silicon technology is now approaching the
physical limits for the traditional bulk MOS devices, since the
carrier transport is confined in very thin semiconductor layers
and new device architectures like silicon nanowire FETs and
fin-shaped FETs (FinFETs) are under investigation as valid
alternatives [2].

The modeling of such nanoscale electron devices is based
on multi-physics simulations, where transport equation or
electrostatics are coupled with Schrödinger equation [3]. Still,
solving the Schrödinger problem is the key bottleneck of the
simulation; thus, we focus on the development of accurate and
efficient numerical methods for the solution of the Schrödinger
equation in the effective mass approximation [4].

In this framework, one of the purposes of the paper is
to show how the geometric structure behind the Schrödinger
problem, formulated in arbitrarily 3D shaped domains, leads
to a numerically efficient discrete counterpart consisting of
a standard eigenvalue problem. Such a result follows from
the so-called Discrete Geometric Approach (DGA) [5]. On
the contrary, Finite Elements (FE) discretization yields to a
computationally heavy generalized eigenvalue problem.

Moreover, we will also show how the discrete counterpart of
the Schrödinger problem, deduced from DGA, and that from
FE are partially related by a lumping technique. Finally, a
numerical comparison between the two discrete counterparts
is also given in terms of convergence with mesh refinement
and accuracy.

II. The Schrödinger equation reformulated

We focus on a 3D spatial domain D, individuated by the
Cartesian components (x, y, z) of the position vector r (vectors
and tensors are denoted in roman type) of a particle; the
medium properties are described by a diagonal double tensor
q(r) whose i j-th Cartesian component, with i, j = 1, . . . 3, is

qi j(r) =
~2

2mi(r)
δi j, (1)

where ~ is the reduced Plank constant and mi(r) is the effective
mass coefficient of the particle, along the i-th Cartesian axis,
with i = 1, . . . 3; δi j is the Kronecker symbol. We also denote
with λ the unknown eigenvalue (or energy level) and with ψ(r)
the corresponding eigenfunction evaluated at a point r; mi(r)
is here assumed independent of λ. Finally, u(r) denotes the
confinement potential energy term in D, considered known in
this paper. Now, we introduce a pair of vector fields a(r), b(r)
and a scalar field ϕ(r) in such a way that

−gradψ(r) = a(r), (2)
div b(r) = ϕ(r) (3)

and

q(r)a(r) = b(r), (4)
(λ − u(r))ψ(r) = ϕ(r), (5)

hold simultaneously. Of course, boundary conditions on ∂D
and interface conditions must be considered in addition to
close the problem. It is apparent that (2), (4), (3) and (5)
are equivalent to the standard time independent Schrödinger
problem [4]

−div q(r)gradψ(r) = (λ − u(r))ψ(r). (6)

III. The discrete geometric eigenvalue problem

According to the Discrete Geometric Approach, using a
pair of interlocked cell complexes with V tetrahedra and
N nodes, we will demonstrate how a discrete counterpart
of the Schrödinger problem based on a piecewise uniform
approximation of ψ can be written as

(S + Ū) Ψ̄ = λ̄T̄ Ψ̄, (7)

where, the array Ψ̄, of dimension N, contains the nodal values
of ψ, the square matrices S, Ū, T̄ have dimension N and
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Figure 1: The convergence w.r.t. mesh refinement of the first
and twentieth eigenvalues.

their entries are strictly related to the metric of the geometric
elements of the primal complex; moreover the entries of Ū
are deduced using an affine approximation of u(r) in D and
the metric of the dual complex. An important result of the
geometric discretization approach is that T̄ is diagonal; thus
(7) can be easily and efficiently transformed into a standard
eigenvalue problem.

IV. FE generalized eigenvalue problem and lumping
According to the FE method [6] based on the affine ap-

proximations of ψ(r) and of u(r) in D, the discrete counterpart
of the Schrödinger problem yields the following generalized
eigenvalue problem

(SFE + UFE)ΨFE = λFETFE ΨFE , (8)

where the array ΨFE of the ψ(r) values has dimension N and
the square matrices SFE , UFE , TFE have dimension N. We will
demonstrate that SFE = S holds; however, the matrix TFE is
not diagonal and to transform (8) into a standard eigenvalue
problem, it is usual to apply the so called lumping technique
[6] to the matrix TFE , yielding

(SFE + UFE)Ψl = λl TlΨl, (9)

where the lumped matrix Tl is diagonal, with entries (Tl)ii =∑N
j=1(TFE)i j for i = 1, . . . ,N. Moreover, in the full paper

we will demonstrate how lumping technique applied to the
FE matrix TFE yields the matrix T̄ from discrete geometric
approach and we write Tl = T̄.

V. Numerical results
The formulations have been integrated into the GAME

(Geometric Approach to Maxwell’s Equations) Fortran 90
code developed by the Authors. The FEAST [7] library has
been employed to solve the discrete eigenvalue problems.

To validate the results produced by the described formu-
lations and compare them, a particle in a box benchmark—
which admits a pseudo analytical solution using pseudospec-
tral methods [2]—has been analyzed. This benchmark consists
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Figure 2: The first twenty eigenvalues on the finest mesh.

of a cube of edge d = 10 nm in which the energy distribution
u(r) = x + y + z eV is assumed, where x, y, z range from 0 to
10 nm, and q is a homogeneous, anisotropic diagonal tensor
q = diag(0.04159, 0.20053, 0.20053).

In Fig. 1, the convergence w.r.t. mesh refinement of the first
and twentieth eigenvalues computed by DGA, Finite Elements
(FEM) and lumped Finite Elements (LFEM) is compared.
Obviously, the same mesh is used for all the considered
methods. Moreover, the mean between FEM and LFEM is
also considered, since these formulations provide upper and
lower bounds for eigenvalues [6].

The DGA exhibits superior accuracy w.r.t. FEM and LFEM
techniques and this behavior holds for all eigenvalues, as Fig.
2 shows for the first twenty. DGA is advantageous also from
the execution time point of view, since a standard eigenvalue
problem is solved in place of a generalized one. In fact,
generalized eigenvalue problem solvers need stiffness matrix
factorization, that is extremely memory and time consuming
for large scale problems. Three other problems whose results
confirm the advantages of DGA will be presented in the full
paper, demonstrating the convenience of DGA with respect to
FEM both in terms of accuracy and speed.
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