
Abstract—A reduced-order modeling FDTD/VFETD technique is 
presented in this paper, for the accurate and cost-effective study of 
multiconductor nanoscale structures. The novel algorithm blends a 
compact stencil-optimized discretization process with general vector 
finite elements and partitions the domain into tightly-coupled blocks. 
A key asset is that both approaches are time-advanced independently 
while their state-space models are derived via a Krylov-based scheme 
with scaled Laguerre functions, which drastically decreases the order 
of the transfer matrix. Numerical results from various nanocomposi-
te devices validate the hybrid method and reveal its applicability. 

Index Terms—Carbon nanotubes (CNT), FDTD methods, FETD 
schemes, model-order reduction, nanostructured devices. 

I. INTRODUCTION 
The accurate evaluation of the electromagnetic response of 

nanostructured components and carbon nanotube (CNT) systems 
is strongly associated to the consistent representation of their size 
by the pertinent sampling rates [1], [2]. In particular, when mul-
ticonductor setups are involved, it is critical to quantify any in-
termodulation issues, as ever-increasing switching speeds drive 
signal bandwidths to tens of gigahertz at all levels of high-density 
packaging. Considering that many of these devices must be con-
tinually reconfigured, it is apparent that computational models can 
significantly restrict unduly construction expenses. However, their 
application is not always undemanding, because of the convoluted 
features and the nonlinear character of the preceding systems. To 
this objective, an assortment of robust schemes has been hitherto 
developed to mitigate the analysis’ total complexity [3]-[6]. 

In this paper, a hybrid 3-D algorithm for the comprehensive 
macromodeling of multiconductor nanocomposite applications is 
introduced. The new method combines a compact-stencil finite-
difference time-domain (FDTD) technique with a modified vector 
finite-element time-domain (VFETD) formulation, which are up-
dated independently and separate the domain into flexible local 
blocks coupled by the proper continuity conditions. The decrease 
of the discrete model is achieved via a Laguerre-oriented Krylov-
subspace model-order reduction scheme that splits all subspace 
vectors into their electric field intensity and magnetic flux density 
parts at a stage prior to any simulation. Thus, the number of un-
known variables is seriously confined and high levels of accuracy 
as well as resources economy are attained, even when sub-wave-
length details are to be considered. These advantages are success-
fully certified by diverse nanostructured setups with complex ge-
ometries, large electrical sizes, and arbitrarily-curved interfaces. 

II. REDUCED-ORDER-MODEL FDTD/VFETD TECHNIQUE 

Starting from the first part of the 3-D hybrid method, the prin-
cipal aim is to construct an efficient FDTD discretization, based 
on a generalized curvilinear dual-lattice regime. Hence, a family 
of compact spatial and temporal approximators is introduced as 

 
 

Fig. 1. (a) A log-spiral antenna with a multiconductor nanostructured superstrate 
and (b) a hemi-ellipsoidal cavity-backed antenna with a nanocomposite substrate. 
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where ξ(u, v, w) coordinate system, p(i, j, k), Δξ is the spatial 
increment, Δt the time-step, r indicates specific grid points, and 
     1( ) (2 5)( ) 3( 4)( )M Mt q t q t         for [0,1/ 2]q , (3) 

a weighting function for broadband adjustments. Compact forms 
(1) and (2), of order K and M, are then applied to Maxwell’s equa-
tions in the usual way to create an enhanced FDTD model. In fact, 
their tensorial profile leads to a locally-refined dual grid with a 
finite number of uniquely located nodal patterns, which can pre-
cisely describe multiconductor nanoscale devices, as in Fig. 1.  

Concerning the modified VFETD algorithm, we define 
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with G1 = [E, H], G2 = [D, B, Jc] the electric/magnetic intensities, 
fluxes, and external source vectors, and w(1), w(2) the basis func-
tions [7]. Also, G1 = [E, H] denotes the circulation of G1 along 
edge{i} and G2 = [D, B, Jc] the G2 flux through facet{j}. Plugging 
(4) in Ampere’s and Faraday’s law, one gets  

  (1) (2)
c

i j j
i t ji j

    w wH D J , (5a) 
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    w wE B . (5b) 

To simplify the above formulas, one may employ the properties of 
differential forms. So, in matrix notation, (5a) and (5b) become 
 t c  YD H J          and         t  YB E , (6) 

for Y the circulation matrix occupied either by unity or zero 
elements. The system of (6) is completed by the correct associa-
tion of fluxes with fields and the following constitutive relations 
 (2) (1)j i

j ij i
 w wD E , (7a) 

 (2) (1)j i
j ij i

 w wB H . (7b) 

Time advancing in (6) is conducted via a leapfrog-like scheme 
and is completely independent of the time-update procedure in the 
compact FDTD approach, on condition that the minimum Courant 
limit is considered for the selection of both temporal increments.  
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Fig. 2. Maximum L2 norm versus (a) mesh resolution and (b) spatial increment. 
 

Next, the domain is divided into simple FDTD or VETD 
blocks, related to the problem details, and coupled by the suitable 
continuity conditions. This topology allows the accurate treatment 
of periodic nanoscale components, CNT patterns, and multicon-
ductor arrangements with very limited memory requirements.  

Having specified the hybrid methodology and gathering all 
unknown variables in vector x(t), one gets the linear system of 

 d
dt   xZ Fx Qb            and           Ts P x , (8) 

where F is a N×N sparse matrix with discretization data, Ζ is a 
N×N matrix with media information, and Q, P matrices contain-
ing the coupling coefficients for the domain’s neighboring blocks. 
To lessen the size of x in (8), without actually affecting the overall 
accuracy, a model-order reduction approach is developed. The 
principal concept is to construct another linear system with the 
same transfer function between b and s, but with a different vector 
x. In particular, the state-space model (8), with Λ inputs yields the 
Λ×Λ impulse response transfer matrix h(t), that is expanded as  
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by the l(t) = (2m)1/2e–mtLl(2mt) scaled Laguerre functions (for l 
= 0,1,2,…), with m > 0 a scaling parameter and Ll(t) the Laguerre 
polynomial of order l. After some algebra, we acquire matrices 

   1( ) ( )m m   V Z F Z F       and      1( )m  R Z F Q , (10) 

which are used for the extraction of the N×αΛ Krylov subspace K 
= [R,VR,V2R,…,Vα–1R], with factor α denoting the order of re-
duction. Also, during the derivation of K, matrices (10) generate 
the N×αΛ column-orthogonal matrix U through the block Arnoldi 
process [6]. This formulation provides the reduced-order system of 

 d
dt   yZ Fy Qb             and           Ts P y , (11) 

where y(t) is the reduced aΛ vector of unknown variables, and  

 TZ U ZU ,    TF U FU ,    TQ U Q ,    TP U P . (12) 

So by properly selecting α, m and applying (1)-(7), the proposed 
wideband technique significantly minimizes dispersion errors (Fig. 
2), and attains a notable decrease of the computational overhead. 

III. NUMERICAL RESULTS – CONCLUSIONS 
    The novel method is validated by several multiconductor nano-
scale devices. The first problem deals with the performance en-
hancement of a miniaturized 10×10 mm log-spiral antenna via an 
Appl. ScienceTM CNF superstrate, as in Fig. 1(a). For the discreti-
zation, we select m = 5 to obtain a 86×86×28 FDTD grid (K = 
3, M = 2) for the superstrate and a 490,362 VFETD mesh for 
the radiator and the rest of the domain. Figure 3(a) gives the Hy 
variation and Fig. 3(b) the intermodulation voltage between the 
two spirals for diverse α. As detected, the hybrid algorithm over-
whelms the usual FDTD method, even for a 85% denser lattice  

 
 

Fig. 3. (a) Variation of the normalized Hy component and (b) intermodulation 
voltage for two different distances of the nanostructured superstrate in Fig. 1(a). 
 

             
 

Fig. 4. Directivity enhancement of the log-spiral nanoantenna via a nanoscale su-
perstarte. (a) initial, (b) superstrate distance 5 mm, (c) superstrate distance 10 mm. 
 

 
 

Fig. 5. (a) Radiation pattern (straight line: proposed; circles: [2]; dashed line: 
FDTD) and Ez snapshot and (b) system memory versus order-reduction factor α. 
 

and an 80%  higher arithmetic complexity. Also, Fig. 4 shows the 
serious directivity improvement. The second structure is the hemi-
ellipsoidal antenna of Fig. 1(b) with a multiconductor NanotechTM 
CNT substrate. For α = 4, m = 6, the grid comprises 78×65×20 
FDTD cells and 4.982×105 degrees of freedom. Results for the 
radiation pattern and an Ez magnitude snapshot are presented in 
Fig. 5(a), while Fig. 5(b) shows the significant decrease of the sys-
tem memory needs (likewise for CPU time) in terms of α factor. 
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